首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B均为n阶矩阵,且AB=A一B,A有n个互不相同的特征值λ1,λ2,…,λn,证明: (1)λi≠一1(i=1,2,…,n); (2) AB=BA; (3)A的特征向量都是B的特征向量; (4)B可相似对角化.
设A、B均为n阶矩阵,且AB=A一B,A有n个互不相同的特征值λ1,λ2,…,λn,证明: (1)λi≠一1(i=1,2,…,n); (2) AB=BA; (3)A的特征向量都是B的特征向量; (4)B可相似对角化.
admin
2017-04-23
32
问题
设A、B均为n阶矩阵,且AB=A一B,A有n个互不相同的特征值λ
1
,λ
2
,…,λ
n
,证明:
(1)λ
i
≠一1(i=1,2,…,n);
(2) AB=BA;
(3)A的特征向量都是B的特征向量;
(4)B可相似对角化.
选项
答案
(1)即证|一E一A|≠0,或|E+A|≠0或E+A可逆,这可由AB=A一B[*]A+E)(E—B)= E,[*]A+E可逆,且(A+E)
一1
=E一B. (2)由(1)的(A+E)
*
=E一B,[*](A+E)(E—B)=(E—B)(A+E),即A一AB+E一B=A+E一BA一B[*]AB=BA. (3)设x为A的属于特征值λ
i
的特征向量,则Ax=λ
i
x,两端左乘B,并利用BA=AB,得A(Bx)=λ
i
(Bx),若Bx≠0,则Bx亦为A的属于λ
i
的特征向量,因属于λ
i
的特征子空间是一维的,故存在常数μ,使Bx=μx,因此x也是B的特征向量;若Bx=0,则Bx=0x,x也是B的属于特征值0的特征向量. (4)由条件知A有n个线性无关的特征向量,于是由(3)知B也有n个线性无关的特征向量,故B相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/att4777K
0
考研数学二
相关试题推荐
函数f(x,y)在点(x0,y0)处偏导数存在,是f(x,y)在该点处________。
计算xydδ,其中D是由直线y=1,x=2,y=x所围成的区域。
设f(x,y)连续,且f(x,y)=xy+f(u,v)dudv,其中D是由y=0,y=x2,x=1所围区域,则f(x,y)=________。
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
差分方程yt+1-2yt=3t+1的通解为________.
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x是某二阶线性非齐次微分方程的三个解,求此微分方程。
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).求L的方程。
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2)上的最大值与最小值.
设A为n阶可逆矩阵,则下列结论正确的是().
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
随机试题
如何牢牢把握全面深化改革的正确方向?
下列哪些生效法律文书,可以由审判庭移送执行机构执行?()
国有资产折股时,不得低估作价并折股,折股比率不得低于( )。
若流动比率大于1,则下列说法正确的是()。
李某2013年3月取得的下列收入中,应缴纳个人所得税的是()。
①为了储存足够的水分,多肉植物的根、茎、叶部进化成富有大量浆液的组织②多肉植物来自高山、沙漠等气候干燥的环境③不用太多浇水和打理,它们就能存活④以帮助它们在干旱恶劣的气候环境中得以生存⑤因此,它们非常适合室内种植
InKualaLumpurcranesstretchoutwardamongthegleamingtowersinaperpetualconstructionboompoweredbyforeigninvestment.
关于Python的列表,以下选项中描述错误的是
ThepassagetellsusthatasachildgrowsupAccordingtothepassage,theabilitiesachildhasinheritedfromhisparents
"MomentofReckoning":U.S.CitiesBurnRecyclablesafterChinaBansImportsA)TheconscientiouscitizensofPhiladelphiacont
最新回复
(
0
)