首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设数列{xn}满足0<x1<1,ln(1+xn)=exn+1一1(n=1,2,…).证明 当0<x<1时,ln(1+x)<x<ex一1;
设数列{xn}满足0<x1<1,ln(1+xn)=exn+1一1(n=1,2,…).证明 当0<x<1时,ln(1+x)<x<ex一1;
admin
2018-08-22
77
问题
设数列{x
n
}满足0<x
1
<1,ln(1+x
n
)=e
x
n+1
一1(n=1,2,…).证明
当0<x<1时,ln(1+x)<x<e
x
一1;
选项
答案
记F
1
(x)=ln(1+x)一x,则[*]于是F
1
(x)在(0,1)内单调减少,由F
1
(0)=0,知F
1
(x)<0,x∈(0,1),从而 ln(1+x)<x; 记F
2
(x)=x-e
x
+1,则F’
2
(x)=1一e
x
<0,于是F
2
(x)在(0,1)内单调减少,由F
2
(0)=0, 知F
2
(x)<0,x∈(0,1),从而 x<e
x
一1. 故ln(1+x)<x<e
x
一1,0<x<1.
解析
转载请注明原文地址:https://kaotiyun.com/show/bHj4777K
0
考研数学二
相关试题推荐
求下列积分:
一sinθ由x=rcosθ,y=rsinθ,得u=
设函数f(u)有连续的一阶导数,f(2)=1,且函数满足求z的表达式.
设f(x),g(x)在[a,b]上连续,证明:至少存在一点ξ∈(a,b),使得f(ξ)∫ξbg(x)dx=g(ξ)∫aξf(x)dx.
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1)及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0xS(t)dt(x≥0).
设3阶行列式且M11+M12+M13=11,其中Mij是行列式D中元素aij的余子式,求a,b的值.
设一1<x1<0,xn+1=xn2+2xn(n=0,1,2,…).证明数列{xn}的极限存在,并求此极限值.
(1996年)设f(χ)有连续导数,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk是同阶无穷小,则k等于
(2012年)已知函数f(χ)=,记a=f(χ).(Ⅰ)求a的值;(Ⅱ)若当χ→0时,f(χ)-a与χk是同阶无穷小,求常数k的值.
设则F(x)()
随机试题
某炉炉膛出口含氧量为3.5%,最后经过尾部受热面后氧量增加到7%,求此段的漏风系数。
政治体制是一个国家的国体和政权的组织形式及其有关制度。一般来说,政策、法规的透明度较高,政策的稳定性较好的政治体制属于()
旅游污染
意大利“新现实主义”电影的代表作品有______。()
旅游业具有的特点有()。
“国”与“民”,“民”与“民”之间的收入失衡问题,不仅关乎民生,还关乎经济。作为创造社会财富主力军的普通民众在整个国民财富分配中只占小头,这是长期以来收入分配制度在利益博弈中严重向权力与资本倾斜的必然结果。如果将国民创造的社会财富比做一块“蛋糕”,问题不在
()是邓小平对外开放思想中最具有远见卓识和最富有实践效应的伟大创举。
小丽在情人节那天收到了专递公司送来的一束鲜花。如果这束花是熟人送的,那么送花人一定知道小丽不喜欢玫瑰而喜欢紫罗兰。但小丽收到的是玫瑰。如果这束花不是熟人送的,那么,花中一定附有签字名片。但小丽收到的花中没有名片。因此,专递公司肯定犯了以下的某种错误:或者该
宋朝画家文与可住宅周围有很多竹子。他一年四季都注意观察竹子的变化,对竹子的形状、姿态有透彻的了解,因此画出的竹子生动逼真。有诗云:“与可画竹时,胸中有成竹。”这一事实体现的哲学道理是()
TherewasatimewhenredmeatwasaluxuryforordinaryAmericans,orwasatleastsomethingspecial:cookingaroastforSunda
最新回复
(
0
)