首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2. 求A的全部特征值;
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2. 求A的全部特征值;
admin
2019-12-26
26
问题
设A为3阶实对称矩阵,且满足条件A
2
+2A=O.已知A的秩r(A)=2.
求A的全部特征值;
选项
答案
设A为A的一个特征值,对应的特征向量为α,则 Aα=λα (α≠0),A
2
α=λ
2
α, 于是 (A
2
+2A)α=(λ
2
+2λ)α, 由条件A
2
+2A=O推知 (λ
2
+2A)α=0. 又由于α≠0,故 λ
2
+2λ=0. 解得 λ=-2.λ=0. 因为实对称矩阵A必可对角化,且r(A)=2,所以 [*] 因此,矩阵A的全部特征值为 λ
1
=λ
2
=-2,λ
3
=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/bJD4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为(1)求A.(2)求一个满足要求的正交矩阵Q.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
A是3阶实对称矩阵,A2=E,如果r(A+E)=2,求A的相似对角形,并计算行列式|A+2E|的值.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
已知正、负惯性指数均为1的二次型f=xTAx通过合同变换x=Py化为f=yTBy,其中B=则a=________。
已知一个长办形的长l以2cm/s的速率增加,宽ω以3cm/s的速率增加,则当l=12cm,ω=5cm时,它的对角线增加的速率为_________.
四元方程组的基础解系是______.
已知方程组的通解是(1,2,一1,0)T+k(一1,2,一1,1)T,则a=__________.
随机试题
课外活动最适合的组织者、指导者是()。
多形渗出性红斑属于A.感染性疾病B.传染性疾病C.变态反应性疾病D.遗传性疾病E.自身免疫性疾病
患者,女性,21岁。自诉疼痛开始于上腹及脐周,位置不定,以后疼痛位置转移到右下腹部,并出现全腹持续性疼痛。体检示:体温39.2℃,脉搏124次/分钟,血压105/65mmHg;右下腹压痛,肌紧张,有反跳痛,肠鸣音消失;WBC12.5×109/L,中性粒细
信用证支付方式是随着国际贸易的发展,在银行与金融机构参与国际贸易结算的过程中逐步形成的。关于信用证描述正确的是()。
以下基金品种中适用我国《证券投资基金法》的是()。
某企业2015年初委托施工企业建造仓库一幢,9月末办理验收手续,仓库人账原值400万元;9月30日将原值300万元的旧车间对外投资联营,不承担联营风险,当年收取固定收入10万元。当地政府规定房产原值扣除比例为30%。2015年度该企业上述房产应缴纳房产税(
某公司打算投资一个项目,预计该项目需固定资产投资1000万元,为该项目计划借款筹资1000万元,年利率为4%,每年年末付当年利息。该项目没有建设期,可以持续6年。估计每年固定成本为(不含折旧)100万元,变动成本是每件200元。固定资产折旧采用直线法,折旧
资本资产定价模型是估计权益成本的一种方法。下列关于资本资产定价模型参数估计的说法中,正确的有()。
调查发现,个别地方和单位的负责人,工作中存在虚报浮夸、弄虚作假的现象。群众意见比较大。你认为应当如何解决这个问题?
判断对错。例如:我想去办个信用卡,今天下午你有时间吗?陪我去一趟银行?★他打算下午去银行。(√)现在我很少看电视,其中一个原因是,广告太多了,不管什么时间,也不管什么节目,只要你打开电视,总能看到那么多的广告,浪费我的时间。
最新回复
(
0
)