首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次方程组(Ⅰ)有一个基础解系β=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ)的通解.
设齐次方程组(Ⅰ)有一个基础解系β=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ)的通解.
admin
2016-10-21
33
问题
设齐次方程组(Ⅰ)
有一个基础解系β=(b
11
,b
12
,…,b
1×2n
)
T
,β
2
=(b
21
,b
22
,…,b
2×2n
)
T
,…,β
n
=(b
n1
,b
n2
,…,b
n×2n
)
T
.
证明A的行向量组是齐次方程组(Ⅱ)
的通解.
选项
答案
分别记A和B为(Ⅰ)和(Ⅱ)的系数矩阵. (Ⅰ)的未知量有2n个,它的基础解系含有n个解,则r(A)=n,即A的行向量组α
1
,α
2
,…,α
n
线性无关. 由于β
1
,…,β
n
都是(Ⅰ)的解,有AB
T
=(Aβ
1
,Aβ
2
,…,Aβ
n
)=0,转置得BA
T
=0,即Bα
i
T
=0,i=1,…,n.于是,α
1
,α
2
,…,α
n
是(Ⅱ)的n个线性无关的解.又因为r(B)=n,(Ⅱ)也有2n个未知量,2n-r(B)=n.所以α
1
,α
2
,…,α
n
是(Ⅱ)的一个基础解系.从而(Ⅱ)的通解为 c
1
α
1
+c
2
α
2
+…+c
n
α
n
,c
1
,c
2
,…,c
n
可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/bJt4777K
0
考研数学二
相关试题推荐
e1/2
设f(x)=ln|x|/|x-1|sinx,求f(x)的间断点,并判断其类型.
[*]
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0xS(t)dt(x≥0).
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
设k>0,则函数f(x)=lnx-x/e+k的零点个数为().
求微分方程(x-2xy-y2)+y2=0的通解。
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
设在x=0连续且满足g(x)=1+2x+o(x)(x→0).又F(x)=f[g(x)],则F’(0)=
随机试题
预真空灭菌器的装载量不得超过柜室容积的90%,同时预真空和脉动真空压力蒸汽灭菌器的装载量又分别不得小于柜室容积的()
【2003年第148题】一简支梁见图3-120,图中gk1、gk2表示永久荷载标准值,荷载分项系数1.20;Pk表示活荷载标准值,荷载分项系数1.40;求跨中最大弯矩设计值:
常用的工程本体保护法有()。
装载进口货物的船舶经停上海港后在南京港将进口货物卸下,该批进口货物的完税价格中运费应计算至南京港。()
下列关于费用的表述正确的有()。
已知数列{an}和{bn}满足a1a2a3…an=(√2)bn(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.求an和bn;
一种虾常游弋于高温的深海间歇泉附近,在那里生长有它爱吃的细菌类生物。由于间歇泉发射一种暗淡的光线,因此,科学家们认为这种虾背部的感光器官是用来寻找间歇泉,从而找到食物的。下列哪项对科学家的结论提出质疑?
A、 B、 C、 D、 D
试述评教(教师教学工作的评价)的意义及要求。
AmericanMoviesAmericanMovies【T1】______oftheUnitedStates.Manymovies【T2】______.Butevenamovie【T3】______represents
最新回复
(
0
)