首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 试证:存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积。
设y=f(x)是区间[0,1]上的任一非负连续函数。 试证:存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积。
admin
2022-10-08
80
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
试证:存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的曲边梯形面积。
选项
答案
证法一: 设F(x)=x∫
x
1
f(t)dt,则F(0)=F(1)=0,且F’(x)=∫
x
1
f(t)dt-xf(x).对F(x)在区间[0,1]上应用罗尔定理知,存在一点x
0
∈(0,1),使得F’(x
0
)=0因而 [*]f(x)dx-x
0
f(x
0
)=0 即矩形面积x
0
f(x
0
)等于曲边梯形面积[*]f(x)dx. 证法二: 设在区间(a,1)(a≥[*])内取x
1
,若在区间[x
1
,1]上,f(x)=0,则(x
1
,1)内任一点都可作为x
0
,否则可设f(x
2
)>0为连续函数f(x)在区间[x
1
,1]上的最大值,x
2
∈[x
1
,1]在区间[0,x
2
]上,作辅助函数 ψ(x)=∫
x
1
f(t)dt-xf(x) 则ψ(x)连续,且ψ(0)>0,又 ψ(x
2
)=[*]f(t)dt-x
2
f(x
2
)≤(1-2x
2
)f(x
2
)<0 因而由闭区间上连续函数的介值定理,存在一点x
0
∈(0,x
2
)[*](0,1)使得ψ(x
0
)=0即 [*]f(t)dt=x
0
f(x
0
)
解析
转载请注明原文地址:https://kaotiyun.com/show/DYR4777K
0
考研数学三
相关试题推荐
一汽车沿街道行驶,需要经过三个均设有红绿信号灯的路口,每个信号灯均为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等.以X表示该汽车首次遇到红灯前已通过的路口的个数.求
设求
设函数f(x)在x=a可导,且f(a)≠0,则
设A=(α1,α2,α3)是5×3矩阵β1,β2是齐次线性方程组ATx=0的基础解系,试证α1,α2,α3,β1,β2线性无关
已知向量组A:α1=(0,1,2,3)T,α2=(3,0,1,2)T,α3=(2,3,0,1)T;B:β1=(2,1,1,2)T,β2=(0,-2,1,1)T,β3=(4,4,1,3)T.试证B组能由A组线性表示,但A组不能由B组线性表示.
(1)设α1,α3,β1,β2均为3维列向量,且α1,α3线性无关,β1,β2线性无关,证明存在非零向量ξ,使得ξ既可由α1,α3线性表示,又可由β1,β2线性表示;(2)当时,求所有的既可由α1,α2线性表示,又可由β1,β2线性表示的向量ξ.
设常数λ>0,且收敛,则
设向量组试问(1)a为何值时,向量组线性无关?(2)a为何值时,向量组线性相关,此时求齐次线性方程组x1α1+x2α2+x3α3+x4α4=0的通解.
求曲线与x轴所围成的平面区域绕y轴旋转而成的几何体的体积.
随机试题
二十四節気「立夏」眩い陽差しに草木の緑が輝き、爽やかな風が吹くころ、一年で最も清々しい季節の到来です。ゴールデンウィ一クのまっただ中、本日5月5日は端午の節句こどもの日。二十四節気では「立夏(りっか)」となり、梅雨の二歩手前、しばし訪れる爽快な青
SCA7的特点是
女孩,16岁,13岁初潮,月经周期不规律,7~15/35~65天,每次经量较多,一般用卫生巾2~3包,疲乏消瘦,面色黄白,学习紧张倍感劳累。基础体温呈单相。治疗原则是
常用的亲和层析技术是利用的抗原抗体反应的哪种特点
代理人承担违约责任的行为有()。
我国公共财政改革的核心内容是()。
培训课程开始前应做好后勤准备工作,确认()。[2010年5月三级真题]
我有机会研究了英、法、德诸国中世纪政治制度。随着研究的深入,我十分惊讶地看到,所有这些法律之间存在着惊人的相似之处,尽管各个民族彼此不同,很少融合,却有着如此相似的法律,这不能不使我为之赞叹。由于地点不同,这些法律在细节上出现不断的、无止境的变化,但是它们
下雨:泥泞
BSP的主要目标是提供一个信息系统规划,用以支持企业短期和长期的信息需求对于下面列出的目标Ⅰ.为管理者提供一种形式化的、客观的方法,明确建立信息系统的优先顺序,不应考虑 部门的狭隘利益,并避免主观性Ⅱ.为具有较长生命周期系统的建设、保护系统的投资做准
最新回复
(
0
)