首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点.记α为曲线z=l在点(x,y)处切线的倾角,若,求y(x)的表达式.
[2011年] 设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点.记α为曲线z=l在点(x,y)处切线的倾角,若,求y(x)的表达式.
admin
2019-05-10
73
问题
[2011年] 设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点.记α为曲线z=l在点(x,y)处切线的倾角,若
,求y(x)的表达式.
选项
答案
利用题设条件建立微分方程,求出其特解便可求出y(x)的表达式. 因曲线y=y(x)与直线y=x在原点(0,0)相切,故y(0)=0,y′(0)=1.又由导数的几何意义有[*]=tanα,即α=arctan[*],故[*],则 [*], 即 y"=(1+y′)
2
y′. 该微分方程既不显含y,也不显含x,采用较简的解法求解.为此令y=p(x),则y"=[*], 于是[*]=(1+P
2
)p.分离变量有 [*]=dx(p≠0),dx=[*] 两边积分得到 [*][lnp
2
一ln(1+p
2
)]=lnp—ln[*]=x+C, 即 ln[*]=x+C
1
. 又当x=0时P=P′(0)=1,因而C
1
=[*]故 [*] 解之得到y′=[*](因y′(0)=1,舍去负根),故 y=[*]+C
2
. 又由y(0)=0得C
2
=一π/4,故所求的y(x)的表达式为y(x)=arcsin(e
x
/√2)一π/4.
解析
转载请注明原文地址:https://kaotiyun.com/show/bNV4777K
0
考研数学二
相关试题推荐
求不定积分
设f′(lnχ)=1+χ,且f(0)=1,求f(χ).
设D={(χ,y)|0≤χ≤1,0≤y≤1},直线l:χ+y=t(t≥0),S(t)为正方形区域D位于l左下方的面积,求∫0χS(t)dt(χ≥0).
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设f(χ)=是连续函数,求a,b.
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.(1)求A的全部特征值;(2)当k为何值时,A+kE为正定矩阵?
求微分方程χ-2y=χlnχ的满足初始条件y(1)=0的特解.
设A=有三个线性无关的特征向量,则a=________
设y=f(x)是区间[0,1]上的任一非负连续函数。又设f(x)在区间(0,1)内可导,且f’(x)>,证明(I)中的x0是唯一的。
(99年)求初值问题的通解.
随机试题
网络操作系统有三种类型,分别是集中式、( )和对等式。
企业在缴纳所得税前允许扣除的项目是()
急性白血病患者的出血多数是因为
A.具有升华性B.具有熔化性C.易发生冻结D.具有吸附性E.具有吸湿性
下列关于行政处罚的说法正确的是?
间接就业效果指标的计算公式,正确表达的是()。
我国合同法规定,当事人在合同中既约定了违约金又约定了定金的,一方违约时,另一方()。
极限=__________.
设系统中有R类资源m个,现有n个进程互斥使用。若每个进程对R资源的最大需求为w,那么当m、n、w取下表的值时,对于下表中的a~e五种情况,(21)两种情况可能会发生死锁。对于这两种情况,若将(22),则不会发生死锁。
Thespeakermakesanannouncementabouttheafternoon______.
最新回复
(
0
)