首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点.记α为曲线z=l在点(x,y)处切线的倾角,若,求y(x)的表达式.
[2011年] 设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点.记α为曲线z=l在点(x,y)处切线的倾角,若,求y(x)的表达式.
admin
2019-05-10
37
问题
[2011年] 设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点.记α为曲线z=l在点(x,y)处切线的倾角,若
,求y(x)的表达式.
选项
答案
利用题设条件建立微分方程,求出其特解便可求出y(x)的表达式. 因曲线y=y(x)与直线y=x在原点(0,0)相切,故y(0)=0,y′(0)=1.又由导数的几何意义有[*]=tanα,即α=arctan[*],故[*],则 [*], 即 y"=(1+y′)
2
y′. 该微分方程既不显含y,也不显含x,采用较简的解法求解.为此令y=p(x),则y"=[*], 于是[*]=(1+P
2
)p.分离变量有 [*]=dx(p≠0),dx=[*] 两边积分得到 [*][lnp
2
一ln(1+p
2
)]=lnp—ln[*]=x+C, 即 ln[*]=x+C
1
. 又当x=0时P=P′(0)=1,因而C
1
=[*]故 [*] 解之得到y′=[*](因y′(0)=1,舍去负根),故 y=[*]+C
2
. 又由y(0)=0得C
2
=一π/4,故所求的y(x)的表达式为y(x)=arcsin(e
x
/√2)一π/4.
解析
转载请注明原文地址:https://kaotiyun.com/show/bNV4777K
0
考研数学二
相关试题推荐
设f(χ)=∫0tanχarctant2dt,g(χ)=χ-sinχ,当χ→0时,比较这两个无穷小的关系.
若f(-χ)=-f(χ),且在(0,+∞)内f′(χ)>0,f〞(χ)>0,则在(-∞,0)内().
已知二次型f=2χ12+3χ22+3χ32+2aχ2χ3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
设f(χ,y)=,试讨论f(χ,y)在点(0,0)处的连续性,可偏导性和可微性.
求u=χ2+y2+z2在约束条件,下的最小值和最大值.
求函数f(χ,y)=4χ-4y-χ2-y2在区域D:χ2+y2≤18上最大值和最小值.
设f(χ)二阶连续可导且f(0)=f′(0)=0,f〞(χ)>0.曲线y=f(χ)上任一点(χ,f(χ))(χ≠0)处作切线,此切线在χ轴上的截距为u,求.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。求f在xTx=3下的最大值。
随机试题
公共关系的本质属性是【 】
促销
关于类风湿小结的叙述,下列哪项正确
关于人员密集建筑的基地布置,下列()不妥。
一空间折杆受力如下图所示,则AB杆的变形为()。
灭火剂在瓶组内用惰性气体进行加压储存,系统动作时灭火剂靠瓶组内的充压气体进行输送的灭火系统称为()。
配送中心要求辐射范围大,而物流中心要求辐射范围小。()
任何偶数都可分解质因数。()
HighwaysintheUSTheUnitedStatesiswell-knownforitsnetworkofmajorhighwaysdesignedtohelpadrivergetfromone
A、Statusandproperty.B、Wordsanddeeds.C、Educationandcharacters.D、Communicationskills.B对话最后,男士说虽然社会对善于表达自己的人非常看重,但归根结底,人
最新回复
(
0
)