首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫0χ(2u-χ)f(χ-u)du,则φ(χ)是( ).
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫0χ(2u-χ)f(χ-u)du,则φ(χ)是( ).
admin
2019-07-28
65
问题
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫
0
χ
(2u-χ)f(χ-u)du,则φ(χ)是( ).
选项
A、单调增加的奇函数
B、单调减少的奇函数
C、单调增加的偶函数
D、单调减少的偶函数
答案
B
解析
φ(χ)=∫
0
χ
(2u-χ)f(χ-u)du
=2∫
0
χ
(χ-u)du-χ∫
0
χ
f(χ-u)du
=-2∫
0
χ
uf(χ-u)d(χ-u)+χ∫
0
χ
(χ-u)d(χ-u)
2∫
χ
0
(χ-t)f(t)dt+χ∫
χ
0
f(t)dt
=2∫
0
χ
(χ-t)f(t)dt-χ∫
0
χ
f(t)dt
=2χ∫
0
χ
f(t)dt-2∫
0
χ
tf(t)dt-χ∫
0
χ
f(t)dt
=χ∫
0
χ
f(t)dt-2∫
0
χ
tf(t)dt
因为φ(-χ)=-χ∫
0
-χ
f(t)dt-2∫
0
-χ
tf(t)dt,
χ∫
0
χ
f(-u)du-2∫
0
χ
(-u)f(-u)d(-u)
=-χ∫
0
χ
f(u)du+2∫
0
χ
uf(u)du=-φ(χ),
所以φ(χ)为奇函数;
又φ′(χ)=∫
0
χ
f(t)dt-χf(χ),
当χ>0时,φ′(χ)=∫
0
χ
f(t)dt-χf(χ)=χ[f(ξ)-f(χ)]≤0(0≤ξ≤χ),
当χ≤0时,φ′(χ)=∫
0
χ
f(t)dt-χf(χ)=χ[f(ξ)-f(χ)]≤0(χ≤ξ≤0),
所以φ(χ)为单调减少的奇函数,选B.
转载请注明原文地址:https://kaotiyun.com/show/bPN4777K
0
考研数学二
相关试题推荐
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f’’(ξ)=0.
设a>0,f(x)=g(x)=而D表示整个平面,则I=f(x)g(y-x)dxdy=_______.
设f(x)连续,且f(x)=2∫0x(x-t)dt+ex,求f(x).
计算二重积分I=∫01dx
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn)
已知方程组有无穷多解,则a=______.
设f(x)在x=a处可导,且f(a)=1,f’(a)=3,求数列极限
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点x处的增量△y=,且y(0)=π,则y(1)=______.
求不定积分
随机试题
对水中细菌,有机物和还原性物质氯化消毒时所消耗的氯量称为
甲厂与乙保险公司签订了一份财产保险合同,合同标的为甲厂的三辆东风牌大卡车。在保险期内,甲厂的一辆东风牌汽车被丙公司的汽车撞毁。经查,该责任在于丙公司。现甲厂向乙保险公司提出赔偿要求。根据有关法律规定,下面表述不正确的是哪项?
什么条件下,必须监测有害气体和氧气含量:()
《中华人民共和国安全生产法》第二十四条规定:“生产经营单位新建、改建、扩建工程项目的安全设施,必须与主体工程同时设计、同时施工、同时投入生产和使用。安全设施投资应当纳入( )”。
股东大会做出决议必须经出席会议的股东所持表决权过半数通过,公司持有的本公司股份可以参与表决。()
下列符合注册税务师职业道德基本要求的有()。
人民警察内务建设的基本方针是( )。
西南军阀跟随孙中山拥护护法运动的目的是()。
OntheInfluenceoftheMicroblog1.如今微博越来越普及2.微博普及对于社会生活的影响3.我的观点
TheArtofFriendshipA)OneeveningafewyearsagoIfoundmyselfinananxiety.Nothingwasreallywrong—myfamilyandIwere
最新回复
(
0
)