首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫0χ(2u-χ)f(χ-u)du,则φ(χ)是( ).
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫0χ(2u-χ)f(χ-u)du,则φ(χ)是( ).
admin
2019-07-28
45
问题
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫
0
χ
(2u-χ)f(χ-u)du,则φ(χ)是( ).
选项
A、单调增加的奇函数
B、单调减少的奇函数
C、单调增加的偶函数
D、单调减少的偶函数
答案
B
解析
φ(χ)=∫
0
χ
(2u-χ)f(χ-u)du
=2∫
0
χ
(χ-u)du-χ∫
0
χ
f(χ-u)du
=-2∫
0
χ
uf(χ-u)d(χ-u)+χ∫
0
χ
(χ-u)d(χ-u)
2∫
χ
0
(χ-t)f(t)dt+χ∫
χ
0
f(t)dt
=2∫
0
χ
(χ-t)f(t)dt-χ∫
0
χ
f(t)dt
=2χ∫
0
χ
f(t)dt-2∫
0
χ
tf(t)dt-χ∫
0
χ
f(t)dt
=χ∫
0
χ
f(t)dt-2∫
0
χ
tf(t)dt
因为φ(-χ)=-χ∫
0
-χ
f(t)dt-2∫
0
-χ
tf(t)dt,
χ∫
0
χ
f(-u)du-2∫
0
χ
(-u)f(-u)d(-u)
=-χ∫
0
χ
f(u)du+2∫
0
χ
uf(u)du=-φ(χ),
所以φ(χ)为奇函数;
又φ′(χ)=∫
0
χ
f(t)dt-χf(χ),
当χ>0时,φ′(χ)=∫
0
χ
f(t)dt-χf(χ)=χ[f(ξ)-f(χ)]≤0(0≤ξ≤χ),
当χ≤0时,φ′(χ)=∫
0
χ
f(t)dt-χf(χ)=χ[f(ξ)-f(χ)]≤0(χ≤ξ≤0),
所以φ(χ)为单调减少的奇函数,选B.
转载请注明原文地址:https://kaotiyun.com/show/bPN4777K
0
考研数学二
相关试题推荐
求极限
下列说法正确的是().
设f(x)=3x2+Ax-3(x>0).A为正常数,问A至少为多少时f(x)≥20?
设ξ为f(x)=arctanx在[0,a]上使用微分中值定理的中值,则为().
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
当x→0时下列无穷小是x的n阶无穷小,求阶数n:(Ⅰ)ex4-2x2-1;(Ⅱ)(1+tan2x)sinx-1;(Ⅲ)(Ⅳ)∫0xsint.sin(1-cost)2dt.
设f’(x)存在,求极限,其中a,b为非零常数.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设a>0为常数,求积分I=xy2dσ,其中D:x2+y2≤ax.
随机试题
16岁少女,骑自行车时不慎摔伤,自觉外阴部胀痛难忍,最可能的诊断是:
A、花盛期B、开花前期C、生长末期D、花后期E、花蕾期甘草中甘草甜素含量最高的时期是
延胡索的功效有()。
道氏理论的局限性在于()。Ⅰ.道氏理论发出的信号具有超前性Ⅱ.道氏理论发出的信号具有滞后性Ⅲ.道氏理论过于强调股价平均数Ⅳ.道氏理论只能侧重于长期的分析而不能做出短期分析
崔某不服甲市乙县政府向王某发放集体土地建设用地使用证,向甲市政府申请行政复议。甲市政府驳回了崔某的复议申请,但改变了集体土地建设用地使用证所认定的主要事实。崔某不服,提起行政诉讼。下列说法中正确的有()。
下列各项中,不属于负债基本特征的是()。
下列概念理解正确的有()。
国有企业、事业组织等收藏、保管的文物属于国家所有。()
胡蓝之狱
TheSecrettoRaisingSmartKidsA)Ifirstbegantoinvestigatethebasisofhumanmotivation—andhowpeoplepersevereafterset
最新回复
(
0
)