首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫0χ(2u-χ)f(χ-u)du,则φ(χ)是( ).
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫0χ(2u-χ)f(χ-u)du,则φ(χ)是( ).
admin
2019-07-28
85
问题
设函数f(χ)是连续且单调增加的奇函数,φ(χ)=∫
0
χ
(2u-χ)f(χ-u)du,则φ(χ)是( ).
选项
A、单调增加的奇函数
B、单调减少的奇函数
C、单调增加的偶函数
D、单调减少的偶函数
答案
B
解析
φ(χ)=∫
0
χ
(2u-χ)f(χ-u)du
=2∫
0
χ
(χ-u)du-χ∫
0
χ
f(χ-u)du
=-2∫
0
χ
uf(χ-u)d(χ-u)+χ∫
0
χ
(χ-u)d(χ-u)
2∫
χ
0
(χ-t)f(t)dt+χ∫
χ
0
f(t)dt
=2∫
0
χ
(χ-t)f(t)dt-χ∫
0
χ
f(t)dt
=2χ∫
0
χ
f(t)dt-2∫
0
χ
tf(t)dt-χ∫
0
χ
f(t)dt
=χ∫
0
χ
f(t)dt-2∫
0
χ
tf(t)dt
因为φ(-χ)=-χ∫
0
-χ
f(t)dt-2∫
0
-χ
tf(t)dt,
χ∫
0
χ
f(-u)du-2∫
0
χ
(-u)f(-u)d(-u)
=-χ∫
0
χ
f(u)du+2∫
0
χ
uf(u)du=-φ(χ),
所以φ(χ)为奇函数;
又φ′(χ)=∫
0
χ
f(t)dt-χf(χ),
当χ>0时,φ′(χ)=∫
0
χ
f(t)dt-χf(χ)=χ[f(ξ)-f(χ)]≤0(0≤ξ≤χ),
当χ≤0时,φ′(χ)=∫
0
χ
f(t)dt-χf(χ)=χ[f(ξ)-f(χ)]≤0(χ≤ξ≤0),
所以φ(χ)为单调减少的奇函数,选B.
转载请注明原文地址:https://kaotiyun.com/show/bPN4777K
0
考研数学二
相关试题推荐
设函数f(x)连续,且f’(0)>0,则存在δ>0使得().
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为O,5,32.求A-1的特征值并判断A-1是否可对角化.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.(1)确定a,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
下列可表示由双纽线(x2+y2)2=x2-y2围成平面区域的面积的是
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
计算下列不定积分:
设f(x)为连续函数,且满足f(x)=x+∫01xf(x)dx,则f(x)=_______.
设有微分方程y’-2y=φ(x),其中φ(x)=试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
(10年)一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平激.当油罐中油面高度为时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
随机试题
被审计单位2013年12月31目的银行存款余额调节表包括一笔“企业已付、银行未付”调节项,其内容为以支票支付赊购材料款。下列审计程序中,能为该调节项提供审计证据的有()。
中观层面上,不属于普惠金融体系构成部分的是()。
用柴胡疏肝理气,兼引诸药人肝经的方剂是()(2004年第138题)
请简要陈述元朝的立法活动。
谷底不会产生泉水涌出的地质构造是:[2005-10]
某建设工程项目的承包商为了实现项目目标,制订了一系列控制项目目标的主要措施,这些措施的类型有()。
现金日记账和银行存款日记账,每一账页登记完毕结转下页时,结计“过次页”的本页合计数应当为()的发生额合计数。
在债的消灭中,债权人和债务人合为一人的事实被称为()
在数据管理技术发展的三个阶段中,数据共享最好的是( )。
所谓关系是指()。
最新回复
(
0
)