首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
admin
2018-06-27
47
问题
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
选项
答案
记s=n-r(A),则本题要说明两点.(1)存在AX=β的s+1个线性无关的解.(2)AX=β的s+2个解一定线性相关. (1)设ξ为(Ⅰ)的一个解,η
1
,η
2
,…,η
s
为导出组的基础解系,则ξ不能用η
1
,η
2
,…,η
s
线性表示,因此ξ,η
1
,η
2
,…,η
s
线性无关.ξ,ξ+η
1
,ξ+η
2
,…,ξ+η
s
是(Ⅰ)的s+1个解,并且它们等价于ξ,η
1
,η
2
,…,η
s
于是 r(ξ,ξ+η
1
,ξ+η
2
,…,ξ+η
s
)=r(ξ,η
1
,η
2
,…,η
s
)=s+1, 因此ξ,ξ+η
1
,ξ+η
2
,…,ξ+η
s
是(I)的s+1个线性无关的解. (2)AX=β的任何s+2个解都可用ξ,η
1
,η
2
,…,η
s
这s+1向量线性表示,因此一定线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/xlk4777K
0
考研数学二
相关试题推荐
已知向量组α1=(1,2,=1,1),α2=(2,0,t,0),α3=(0,-4,5,-2)的秩为2,则t=________.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(1)证明α1,α2,α3线性无关;(2)令P=(α1,α2,α3),求P-1AP.
设向量组α1,α2,…αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+α1,线性无关.
已知齐次线性方程组其中.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多解的情形下,试求出一般解.
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程(ii)的解.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
设A是m×n矩阵,且方程组Ax=b有解,则
随机试题
患者女,58岁。因慢性胆囊炎急性发作入院治疗,给予抗感染、补液、对症治疗,日输液量1000ml。今晨输液过程中,突然出现胸闷、胸骨后疼痛,继之呼吸困难、严重发绀,主诉有濒死感觉,听诊心前区可闻及一个响亮、持续的“水泡声”。此时患者应采取的体位是
男性,32岁,3小时前从5m高处跌下,左腰部撞到石块上,当时无昏迷,现血压正常,感左腰部疼痛伴轻压痛,尿常规RBC(+),最可能的诊断是
下列选项与牛顿内摩擦定律直接有关的因素是()。
2012年北京C大学老师在统计学生成绩时,新建一个工作簿名为“学生成绩单”。新建Excel文件的sheetl工作表中内容录入如下表所示。利用Excel所学公式计算得出“总分”、“平均分”和“最低分”,在此计算操作过程中,以下各项说法错误的是(
下列各项中,属于我国预算法律制度的构成的有()。
“集合票据”是指2个(含)以上、10个(含)以下具有法人资格的中小非金融企业,在银行间债券市场以()共同发行的,约定在一定期限还本付息的债务融资工具。Ⅰ.统一产品设计Ⅱ.统一券种冠名Ⅲ.统一信用增进Ⅳ.统一注
2019年1月10日,甲为自己向某保险公司投保了重大疾病保险附加医疗保险。其中,重大疾病保险金额为50万元,观察期为180天,保险期限为终身;附加医疗保险金额为10万元,保险期限为1年,观察期为30天,责任期限为180天,绝对免赔额为500元,共保比例为8
Gracey刮治器的特点,哪一项不正确()。
简述法律概念的作用。
GooglealreadyhasawindowintooursoulsthroughourInternetsearchesanditnowhasinsightintoourailingbodiestoo.The
最新回复
(
0
)