首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2017年] 设二次型f(x1,x2,x3)=2x12一x22+ax32+2x1x2—8x1x3+2x2x3在正交变换X=QY下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵.
[2017年] 设二次型f(x1,x2,x3)=2x12一x22+ax32+2x1x2—8x1x3+2x2x3在正交变换X=QY下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵.
admin
2019-05-10
62
问题
[2017年] 设二次型f(x
1
,x
2
,x
3
)=2x
1
2
一x
2
2
+ax
3
2
+2x
1
x
2
—8x
1
x
3
+2x
2
x
3
在正交变换X=QY下的标准形为λ
1
y
1
2
+λ
2
y
2
2
,求a的值及一个正交矩阵.
选项
答案
先求出二次型的矩阵及其特征值,再求出特征向量,规范化后即得正交矩阵. (1)A=[*],令X=[*],则 f(x
1
,x
2
,x
3
)=X
T
AX. 由于标准形为λ
1
y
1
2
+λ
2
y
2
2
,可知矩阵A有零特征值,即λ
3
=0,故∣A∣=0,即 ∣A∣=[*]=一3(a一2)=0,解得a=2. (2)由∣λE-A∣=[*]=λ(λ+3)(λ一6)=0,得λ
1
=-3,λ
2
=6,λ
3
=0. 当λ
1
=一3时,一3E—A→[*],得λ
1
=一3对应的线性无关的特征向量为α
1
=[*]. 当λ
2
=6时,6E—A=[*],得λ
2
=6对应的线性无关的特征向量α
2
=[*] 由0E-A→[*],得λ
3
=0对应的线性无关的特征向量α
3
=[*]. 规范化得[*] 故正交矩阵Q=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/bVV4777K
0
考研数学二
相关试题推荐
设f(χ)是(-∞,+∞)上的连续非负函数,且f(χ)∫0χ(χ-t)dt=sin4χ,求f(χ)在区间[0,π]上的平均值.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设α1,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT.(1)求方程组AX=0的通解;(2)求A的非零特征值及其对应的线性无关的特征向量.
就a,b的不同取值,讨论方程组解的情况.
设φ1(χ),φ2(χ)为一阶非齐次线性微分方程y′+P(χ)y=Q(χ)的两个线性无关的特解,则该方程的通解为().
微分方程y’’-y=ex+1的一个特解应具有形式(式中a,b为常数)().
如图3—1,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于()
设L:y=sinx(0≤x≤).由x=0,L及y=sint围成面积S1(t);由y=sint,L及x=围成面积S2(t),其中0<t<t取何值时,S(t)=S1(t)+S2(t)取最大值?
设f(x)为连续函数,F(t)=∫1tdy∫ytf(x)dx,则F’’(2)等于()
随机试题
感受寒邪而致的“中寒”是指
关于生效裁判执行,下列哪一做法是正确的?
某房地产开发公司拟在某城市近郊区开发建造一居住区,具体的设计规划见相关文件。居住区用地的中高层住宅比例为40%、总建筑密度为50%、住宅建筑净密度为80%;该用地现已成为市政公用设施齐全,布局完整,环境较好,以多、中、高层住宅为主的用地。该类用地按照土
二级资质房地产估价机构可以从事的房地产估价业务有()。[2008年考题]
我国统一规定《测绘资质证书》的式样的部门是()。
某公司承接一座城市跨河桥A标,为上、下行分立的两幅桥,上部结构为现浇预应力混凝土连续箱梁结构,跨径为70m+120m+70m。建设中的轻轨交通工程B标高架桥在A标两幅桥梁中间修建,结构形式为现浇截面预应力混凝土连续箱梁,跨径为87.5m+145m+87.5
易燃气体的火灾危险性不包括()。
账户的期末余额=期初余额+本期增加发生额一本期减少发生额。()[2009年真题]
不在公司担任具体管理职务的董事,因履行职责到达公司现场的时间每年应当不少于()
下列各项资产减值准备中,在相关资产持有期间内可以通过损益转回的有()
最新回复
(
0
)