首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2017年] 设二次型f(x1,x2,x3)=2x12一x22+ax32+2x1x2—8x1x3+2x2x3在正交变换X=QY下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵.
[2017年] 设二次型f(x1,x2,x3)=2x12一x22+ax32+2x1x2—8x1x3+2x2x3在正交变换X=QY下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵.
admin
2019-05-10
79
问题
[2017年] 设二次型f(x
1
,x
2
,x
3
)=2x
1
2
一x
2
2
+ax
3
2
+2x
1
x
2
—8x
1
x
3
+2x
2
x
3
在正交变换X=QY下的标准形为λ
1
y
1
2
+λ
2
y
2
2
,求a的值及一个正交矩阵.
选项
答案
先求出二次型的矩阵及其特征值,再求出特征向量,规范化后即得正交矩阵. (1)A=[*],令X=[*],则 f(x
1
,x
2
,x
3
)=X
T
AX. 由于标准形为λ
1
y
1
2
+λ
2
y
2
2
,可知矩阵A有零特征值,即λ
3
=0,故∣A∣=0,即 ∣A∣=[*]=一3(a一2)=0,解得a=2. (2)由∣λE-A∣=[*]=λ(λ+3)(λ一6)=0,得λ
1
=-3,λ
2
=6,λ
3
=0. 当λ
1
=一3时,一3E—A→[*],得λ
1
=一3对应的线性无关的特征向量为α
1
=[*]. 当λ
2
=6时,6E—A=[*],得λ
2
=6对应的线性无关的特征向量α
2
=[*] 由0E-A→[*],得λ
3
=0对应的线性无关的特征向量α
3
=[*]. 规范化得[*] 故正交矩阵Q=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/bVV4777K
0
考研数学二
相关试题推荐
计算定积分
f(χ)在[-1,1]上连续,则χ=0是函数g(χ)=的().
设=b其中a,b为常数,则().
设二次型f=2χ12+2χ22+aχ32+2χ1χ2+2bχ1χ3+2χ2χ3经过正交变换X=QY化为标准形f=y12y22+4y32,求参数a,b及正交矩阵Q.
求函数z=χ2+2y2-χ2y2在D={(χ,y)|χ2+y2≤4,y≥0}上的最小值与最大值.
微分方程|x=1满足y=1的特解为__________。
设D1是由抛物线y=2x2和直线x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2.(1)试求D1绕x轴旋转而成的旋转体的体积V1;D2绕y轴旋转而成的旋转体的体积V2;(2)问
计算,其中D为单位圆血x2+y2=1所围成的第一象限的部分.
(08年)设函数y=y(x)由参数方程确定,其中x(t)是初值问题的解,求
[2018年]=__________。
随机试题
合同当事人既约定了定金又约定了违约金,未违约的一方()。
下列哪种药物既能保护胃黏膜,又能根除幽门螺杆菌
患者,男性,25岁。诊断为重型再生障碍性贫血1月余。某日患者突然出现头痛、头晕、视力模糊、呼吸急促。根据其目前状况,护士此时不需紧急提供的护理措施是
为保证在发生火灾是安全疏散,厂房安全出口的数目不应少于________个。()
下列不属于事故报告应包括的内容是()。
下列经济业务中,因经营活动而引起的现金流入有()。
组织平衡论认为,组织的存在和成功取决于()之间的平衡关系。
一家电影院的电影票收费标准为50元/次,若购买会员年卡,可享受如下优惠:若小李一年内在该电影院观影次数介于10—20次,则对于他来说最省钱的方式为:
根据下面材料回答下列题。2010年一季度广东农村居民期内现金支出较上年同期大约提高了()。
中央银行货币供给减少10%。(2015年西南财经大学802经济学二)短期和长期内失业率和通货膨胀的关系是什么?
最新回复
(
0
)