首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
admin
2018-02-07
69
问题
设A是秩为n一1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
选项
A、α
1
+α
2
。
B、kα
1
。
C、k(α
1
+α
2
)。
D、k(α
1
一α
2
)。
答案
D
解析
因为A是秩为n一1的凡阶矩阵,所以Ax=0的基础解系只含一个非零向量。又因为α
1
,α
2
是方程组Ax=0的两个不同的解向量,所以α
1
一α
2
必为方程组Ax=0的一个非零解,即α
1
一α
2
是Ax=0的一个基础解系,所以Ax=0的通解必定是k(α
1
一α
2
)。选D。
此题中其他选项不一定正确。因为通解中必有任意常数,所以选项A不正确;若α
1
=0,则选项B不正确;若α
1
=一α
2
≠0,则α
1
+α
2
=0,此时选项C不正确。
转载请注明原文地址:https://kaotiyun.com/show/bXk4777K
0
考研数学二
相关试题推荐
证明:当x≥5时,2x>x2.
求下列各微分方程的通解(1)2y〞+yˊ-y=2ex;(2)y〞+a2y=ex;(3)2y〞+5yˊ=5x2-2x-1;(4)y〞+3yˊ+2y=3xe-x;(5)y〞-2yˊ+5y=exsin2x;(6)y〞-6yˊ+9y=
若f(x)是连续函数,证明
设D是位于曲线下方、x轴上方的无界区域.当a为何值时,y(a)最小?并求此最小值.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
设矩阵A与B相似,且求a,b的值;
函数y=x+2cosx在[0,π/2]上的最大值为________.
(2009年试题,23)设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(I)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
随机试题
Wherearethespeakersgoingtostay?
A.髌韧带B.半月板C.后交叉韧带D.翼状襞E.腓侧副韧带位于膝关节囊前壁的是()
奸党罪始创于()。
理论上“八项因素”构成的房租通常称为()。
顾客力量分析是企业特定经营环境分析的重要内容,不包括()。
在儿童早期,促使学生努力获得学习成就的是()。
西方宗教学的奠基人麦克斯.缨勒解释道:“宗教是一种内心的本能或气质,它独立地、不借助感觉和理性,能使人们领悟在不同名称和各种伪装下的无限。”把宗教解释为“独立地、不借助感觉和理性”而领悟“无限”的才能,真是高明之极。让宗教站在“无限”上,也就一劳永逸地摆脱
①风格的形成也意味着艺术的成熟,风格越强烈,给人的印象越深刻②但冰冻三尺非一日之寒,风格的形成不是一件容易的事,更不能刻意设计而得③颜柳欧赵,苏黄米蔡,风格鲜明,流传千古④它是个人漫长的艺术探索历程,有时甚至要付出一生的精力⑤书法有个性,能形成自己
民主革命时期,中国共产党对民族资产阶级采取又联合又斗争的政策,这是由于民族资产阶级具有
下列叙述中正确的是()。
最新回复
(
0
)