首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0.若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明α1,α2,…,αn线性无关; (2)求A的特征值、特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0.若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明α1,α2,…,αn线性无关; (2)求A的特征值、特征向量.
admin
2016-11-03
65
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0.若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
(1)证明α
1
,α
2
,…,α
n
线性无关;
(2)求A的特征值、特征向量.
选项
答案
(1)设 k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0, ① 用A
n-1
左乘①,得到 k
1
A
n-1
α
1
+k
2
A
n-1
α
2
+…+k
n
A
n-1
α
n
=0. 注意到A
i
α
j
=0,i+j≥n+1.当i+j<n+1时,A
i
α
j
≠0.故 A
n-1
α
2
=0, A
n-1
α
3
=0,…,A
n-1
α
n
=0,A
n-1
α
1
≠0, 从而k
1
A
n-1
α
1
=0,即 k
1
A
n-1
α
1
=k
2
A
n-2
α
2
=…=k
1
Aα
n-1
=k
1
α
n
=0, 而α
n
≠0,故k
1
=0. 同法用A
n-2
,A
n-1
,…,A左乘式①可得 k
2
=k
3
=…=k
n-1
=0. 代入式①有k
n
α
n
=0,而α
n
≠0,故k
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)因Aα
i
=α
i+1
(i=1,2,…,n—1),Aα
n
=0,故 A[α
1
,α
2
,…,α
n
]=[α
2
,α
3
,…,α
n
,0]=[α
1
,α
2
,…,α
n
][*] 因α
1
,α
2
,…,α
n
线性无关,故P=[α
1
,α
2
,…,α
n
]可逆,且p
-1
AP=[*]=B, 所以A~B,显然B的特征值全为0,所以A的特征值也全为0.又因 秩(A)=秩(B)=n—1, 故AX=0的基础解系只含一个解向量.因Aα
n
=0α
n
,而α
n
≠0,故A的关于0的特征向量为kα
n
(k≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/bXu4777K
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 C
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向.
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
由题设,引入辅助函数,即g(x)=ex,则f(x)与g(x)在区间[a,b]上满足柯西中值定理的条件,所以知存在一点η∈(a,b),使得[*]
设φ1(x),φ2(x),φ3(x)是微分方程y"+P(x)y’+Q(x)y=f(x)的三个线性无关的特解,则该方程的通解为().
定积分∫01arctan的值等于
随机试题
急性肺淤血时,肺泡腔内的主要成分是
北京2008奥运会游泳馆“水立方”的外表是下列哪种材料?
我国银行监管制度在探索成形阶段的特点不包括()。
公安部“我最喜爱的人民警察”评选活动自2004年启动以来,至今已经成功举办五届,先后评出了被誉为“中国当代福尔摩斯”的共和国第一代刑侦专家乌国庆,危难时刻挺身而出解救人质,身负重伤的“赤胆英雄”谭纪雄,15000次和死神“过招”的排爆专家王百姓等一大批深受
无产阶级政党的根本组织原则是()
以下行为构成挪用公款罪的是()。
A为三阶实对称矩阵,A的秩为2,且(1)求A的特征值与特征向量.(2)求矩阵A.
Whatkindofseriousshortageisexpectedtogetworseoverthenexttwelvemonths?Shortageofskilledsecretarialand________
Whoissuetheannouncements?Whowillbethenewvicepresidentofthecompany?
A、Theyaretalkingaboutthedate.B、ThewomanadvertisedbeforeWednesday.C、ThemanisreadingWednesday’spaper.D、Themanne
最新回复
(
0
)