首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x),φ3(x)是微分方程y"+P(x)y’+Q(x)y=f(x)的三个线性无关的特解,则该方程的通解为( ).
设φ1(x),φ2(x),φ3(x)是微分方程y"+P(x)y’+Q(x)y=f(x)的三个线性无关的特解,则该方程的通解为( ).
admin
2014-11-26
63
问题
设φ
1
(x),φ
2
(x),φ
3
(x)是微分方程y"+P(x)y’+Q(x)y=f(x)的三个线性无关的特解,则该方程的通解为( ).
选项
A、C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x)
B、C
1
[φ
1
(x)一φ
2
(x)]+C
2
[φ
1
(x)一φ
3
(x)]+C
3
[φ
2
(x)一φ
3
(x)]+φ
1
(x)
C、C
1
[φ
1
(x)一φ
2
(x)]+C
2
φ
2
(x)+φ
3
(x)
D、C
1
[φ
1
(x)一φ
2
(x)]+C
2
[φ
1
(x)一φ
3
(x)]+
[φ
1
(x)+φ
2
(x)+φ
3
(x)]
答案
D
解析
显然C
1
[φ
1
(x)一φ
2
(x)]+C
2
[φ
1
(x)一φ
3
(x)]为y"+P(x)y’+Q(x)y=0的通解,且
[φ
1
(x)+φ
2
(x)+φ
3
(x)]为y"+P(x)y’+Q(x)y=f(x)的特解,选D
转载请注明原文地址:https://kaotiyun.com/show/Ml54777K
0
考研数学一
相关试题推荐
与a1=[1,2,3,-1]T,a2=[0,1,1,2]T,a3=[2,1,3,0]T都正交的单位向量是________.
若向量组α1=[1,1,2]T,α2=[1,a,3]T,α3=[2,0,1]T,α4=[a,2,1]T线性相关,则a为________.
设α1,α2,α3,α4为4维列向量组,其中α1,α2,α3线性无关,α4=α1+α2+2α3,记A=[α1-α2,α2+α3,-α1+aα2+α3],且方程组Ax=α4有无穷多解.求:常数a的值;
已知列向量组α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β2=α3+tα4,β4=α4+tα1,讨论t满足什么条件时,β1,β2,β3,β4也是方程组Ax=0的一个基础解系.
已知向量组a1,a21,…,as+1(s>1)线性无关,βi=ai+tai+1,i=1,2,…,s证明:向量组β1,β2,…,βs线性无关.
设A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设区域D是由曲线y=x2与x=y2在第一象限内围成的图形,y=x将D分成D1与D2,如图1-14-1所示,f(x,y)为连续函数,则().
设f(x,y)为连续函数,则=().
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ex一xz=0所确定,求
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Yi
随机试题
亚里士多德对古希腊的悲剧艺术进行系统理论总结的著作是
垄断优势理论的提出者是()
ONPG试验用于观察细菌分解的物质是
男,78岁,呕吐,腹胀2l小时,无明显腹痛,既往有消化道溃疡病史,上腹部压痛,腹肌紧张,血压80/50mmHg,脉搏108次/min,血淀粉酶250U,血钙1.7mmol/L。影响预后的因素有
城市人行道最小宽度不得小于()。
排烟防火阀是安装在排烟系统管道上,在一定时间内能满足耐火稳定性和耐火完整性要求、起隔烟阻火作用的阀门。当管道内排出的烟气温度达到()时,阀门自动关闭。
氧化性物质的火灾危险性有哪些?
设随机变量X的概率分布为P{X=k}=Ak(k=1,2,3,4,5),则常数A=______,概率=______.
Formostofus,dietingisafrustratingfactoflife.Withsomuchconflictingnutritionalinformationabout,itcanbedifficu
Ausefuldefinitionofanairpollutantisacompoundaddeddirectlyorindirectlybyhumanstotheatmosphereinsuchquantitie
最新回复
(
0
)