首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α4,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1讨论向量组β1,β2,…,βs的线性相关性.
设向量组α1,α4,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1讨论向量组β1,β2,…,βs的线性相关性.
admin
2016-07-22
82
问题
设向量组α
1
,α
4
,…,α
s
(s≥2)线性无关,且β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s-1
=α
s-1
+α
s
,β
s
=α
s
+α
1
讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
方法一 设x
1
β
1
+x
2
β
2
+…+x
s
β
s
=0,即 (x
1
+x
s
)α
1
+(x
1
+x
2
)α
2
+…+(x
s-1
+x
s
)α
s
=0. 因为α
1
,α
2
,…,α
s
线性无关,则[*]其系数行列式 [*] (1)当s为奇数时,|A|=2≠0,方程组只有零解,则向量组β
1
,β
2
,…,β
s
线性无关; (2)当s为偶数时,|A|=0,方程组有非零解,则向量组β
1
,β
2
,…,β
s
线性相关 方法二 显然 [β
1
,β
2
,…,β
s
]=[α
1
,α
2
,…,α
s
][*] =[α
1
,α
2
,…,α
s
]K
s×s
, 因为α
1
,α
2
,…,α
s
线性无关,则 r(α
1
,α
2
,…,α
s
)≤min{r(α
1
,α
2
,…,α
s
),r(K))=r(K) (1)r(K)=s[*]|K|=1+(-1)
s+1
≠0[*]s为奇数时,r(β
1
,β
2
,…,β
s
)=s,则向量组β
1
,β
2
,…,β
s
线性无关; (2)r(K)<s[*]|K|=1+(-1)
s+1
=0[*]s为偶数时,r(β
1
,β
2
,…,β
s
)<s,则向量组β
1
,β
2
,…,β
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/4ew4777K
0
考研数学一
相关试题推荐
将积分f(x,y)dxdy化成极坐标形式,其中D为x2+y2=-8x所围成的区域.
设g(x)在[a,b]上连续,且f(x)在[a,b]上满足f"(x)+g(x)f’(x)-f(x)=0,又f(a)=f(b)=0,证明:f(x)在[a,b]上恒为零.
设fn(x)=Cn1cosx-Cn2cos2x+…+(-1)n-1Cnncos2x,证明:对任意自然数n,方程fn(x)=1/2在区间(0,π/2)内有且仅有一个根.
证明:,其中L是围成区域D的闭曲线,表示函数f(x,y)在曲线L上的点M(x,y)处沿L的外法线方向n的方向导数.
设函数f(x,y)在点(0,0)的某个领域内连续,h(x)具有连续的导函数,且h(0)=0,h’(0)=1,区域DR={(x,y)|x2+y2≤R2},则=________.
已知a.b为单位向量,且=________.
设A为三阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又α=且A*α=α.(Ⅰ)求正交矩阵Q;(Ⅱ)求矩阵A.
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P1=(α1-α3,α2+α3,α3),则P1-1AP1=().
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2ax1x3+2ax2x3经可逆性变换得g(y1,y2,y3)=y12+y22+4y32+2y1y2.求可逆矩阵P.
随机试题
简述中国封建社会的基本特点。
柔性组织特别强调标准化、规范化和规章制度。()
体内脱氧核苷酸是由下列哪类物质直接还原生成的
计算机黑客,是指通过计算机网络非法进入他人系统的计算机入侵者。 ( )
下列有关有限合伙人的说法中,正确的是()。
注册会计师为明确被审计单位的会计责任获取的下列资料中,无效的证据是()。
建构主义学习理论的心理学思想渊源有()
监护人有权处理被监护人财产的法定情形是()。
Mr.Stevensfoundthathomeschooling,farfromrepresenting(i)________philosophy,(ii)________someofthemostwidelyaccept
Forsomeeducators,thereisnothingwrongwithfunandgames.AgroupcalledtheEducationArcaderecentlyheldaconferencein
最新回复
(
0
)