首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α4,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1讨论向量组β1,β2,…,βs的线性相关性.
设向量组α1,α4,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1讨论向量组β1,β2,…,βs的线性相关性.
admin
2016-07-22
75
问题
设向量组α
1
,α
4
,…,α
s
(s≥2)线性无关,且β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s-1
=α
s-1
+α
s
,β
s
=α
s
+α
1
讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
方法一 设x
1
β
1
+x
2
β
2
+…+x
s
β
s
=0,即 (x
1
+x
s
)α
1
+(x
1
+x
2
)α
2
+…+(x
s-1
+x
s
)α
s
=0. 因为α
1
,α
2
,…,α
s
线性无关,则[*]其系数行列式 [*] (1)当s为奇数时,|A|=2≠0,方程组只有零解,则向量组β
1
,β
2
,…,β
s
线性无关; (2)当s为偶数时,|A|=0,方程组有非零解,则向量组β
1
,β
2
,…,β
s
线性相关 方法二 显然 [β
1
,β
2
,…,β
s
]=[α
1
,α
2
,…,α
s
][*] =[α
1
,α
2
,…,α
s
]K
s×s
, 因为α
1
,α
2
,…,α
s
线性无关,则 r(α
1
,α
2
,…,α
s
)≤min{r(α
1
,α
2
,…,α
s
),r(K))=r(K) (1)r(K)=s[*]|K|=1+(-1)
s+1
≠0[*]s为奇数时,r(β
1
,β
2
,…,β
s
)=s,则向量组β
1
,β
2
,…,β
s
线性无关; (2)r(K)<s[*]|K|=1+(-1)
s+1
=0[*]s为偶数时,r(β
1
,β
2
,…,β
s
)<s,则向量组β
1
,β
2
,…,β
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/4ew4777K
0
考研数学一
相关试题推荐
交换积分次序(x,y)dx=__________.
设fn(x)=Cn1cosx-Cn2cos2x+…+(-1)n-1Cnncos2x,证明:对任意自然数n,方程fn(x)=1/2在区间(0,π/2)内有且仅有一个根.
若函数f(x)在[0,1]上二阶可微,且f(0)=f(1),|f"(x)|≤1,证明:|f’(x)|≤1/2在[0,1]上成立.
求,其中∑为下半球面∑:的上侧,a为大于零的常数.
设函数P(x),q(x),f(x)在区间(a,b)上连续,y1(x),y2(x),y3(x)是二阶线性微分方程y”+P(x)y’+q(x)y=f(x)的三个线性无关的解,c1,c2为两个任意常数,则该方程的通解是().
设向量场μ(x,y,z)=yz2i+zx2j+xy2k,则rotμ=________.
设一个4元非齐次线性方程组的通解为k1(一1,3,2,1)T+k2(2,一3,2,1)T+(1,2,1,一1)T,其中k1,k2为任意常数,求该4元非齐次线性方程组.
设A为三阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又α=且A*α=α.(Ⅰ)求正交矩阵Q;(Ⅱ)求矩阵A.
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为α1,α2,α3,令P1=(α1-α3,α2+α3,α3),则P1-1AP1=().
随机试题
地理标志
支原体肺炎治疗应首选哪种抗生素()
柏子养心丸朱砂含量是()。
自动控制系统按()划分,可分为恒值控制系统、随动控制系统和程序控制系统。
预防未成年人犯罪,必须立足于(),从小抓起,对未成年人的不良行为及时进行预防和矫治。
4个人合作做衣服,甲做了其他人做的总数的1/6,乙做了其他人总数的3/11,丙做了其他人做的2/5,丁做了200件,问甲做了多少件?()
1994年,童某、陈某和姜某三人共同在某市设立了一家儿童制衣有限公司,公司注册资本为60万元。章程中载明三人的出资分别是20万元,15万元和25万元,但实际上,三方的出资都没有交足,总共只有价值20万元的生产设备和5万元的流动资金,公司的注册是陈某通过欺骗
rf(r2)dr改为先y后χ的累次积分的形式为_______.
What’stherelationshipbetweenthetwospeakers?
WhichofthefollowingsentencesisINCORRECT?
最新回复
(
0
)