首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明 存在ξ≠η∈(0,1),使得。
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明 存在ξ≠η∈(0,1),使得。
admin
2015-11-16
42
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明
存在ξ≠η∈(0,1),使得
。
选项
答案
在[0,c]及[c,1]上对f(x)分别使用拉格朗日中值定理得到:存在ξ∈(0,c),η∈(c,1),使得 [*] 于是[*]=2c+2(1-c)=2,得证。
解析
注意 上面利用(1)的结论证明了(2)的结论,但(1)的结论也可由(2)的结论推出。
事实上,由
得到 2f
2
(c)-2cf(c)-f(c)+c
=f(c)[2f(c)-1]-c[2f(c)-1]
=[f(c)-c][2f(c)-1]=0。
因f(x)不一定满足f(x)=x,故有2f(c)-1=0,即f(c)=1/2。
转载请注明原文地址:https://kaotiyun.com/show/LTw4777K
0
考研数学一
相关试题推荐
求微分方程y"(3y’2一x)=y’满足初值条件y(1)=y’(1)=1的特解.
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.若极径OM0,OM与曲线L所围成的曲边扇形的面积值等于L上M0,M两点间弧长值的一半,求曲线L的极坐标方程.
求Z=X+Y的概率fZ(z).
设f(x)=3x2+Ax-3(x>0),A为正常数,问A至少为多少时,f(x)≥20?
以y(x)为微分方程y"-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则∫01y(x)dx=________.
某企业做销售某种商品的广告可通过电台及报纸两种方式,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)和报纸广告费用x2(万元)之间的关系如下:R=15+14x1+32x2-8x1x2-2x12-10x22在广告费用不限的情况下,求最
已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x-t)dt=ax2.若f(x)在区间[0,1]上的平均值为1,求a的值.
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
随机试题
甲要盖新房,与乙签订了一份购买沙土的合同。经过商定,乙向甲提供15车沙土,并且运送沙土的车不能是拖拉机。但在履行合同时,乙的车不够,便找了一辆牛车,把沙土运给了甲。甲拒绝接受,认为牛车装的沙土比拖拉机还少,便诉至法院。法院认为乙交付的沙土数量不足,构成违约
我国因茶类众多,但是不同茶类的审评方法和审评因子都相同。
A.山茱萸B.五倍子C.莲子D.诃子E.金樱子具有补脾止泻,养心安神功效的药物是()
甲、乙二公司均为日本公司,因合同纠纷在中国诉讼,下列说法哪些是正确的?()
当设计对砖基础墙防潮层无具体要求时,防潮层宜采用加适量防水剂的1:2水泥砂浆铺设,其厚度宜为()mm。
法玛根据历史信息、公开信息和内部信息这三类信息,将资本市场的有效程度分为()。
清朝的福陵、昭陵在()。
Somepoliticiansarescurryingaboutwithmuchzestandanticipation.It’stime,theirpollsinformthem,tofindthequickfix
Theguestteamwasbeatenbythehostteam2_____4inlastyear’sCFACupFinal.
Thesepictures______tohismindhispreviousdaysinChina.
最新回复
(
0
)