首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为2的3阶实对称矩阵,且A2+5A=0,则A的特征值是_____.
设A是秩为2的3阶实对称矩阵,且A2+5A=0,则A的特征值是_____.
admin
2018-06-27
51
问题
设A是秩为2的3阶实对称矩阵,且A
2
+5A=0,则A的特征值是_____.
选项
答案
-5,-5,0
解析
因为A是实对称矩阵,故A-Λ.又r(A)=2,所以r(A)=2.设Aα=λα(α≠0),由A
2
+5A=0得λ
2
+5λ
2
=0.因此A的特征值为0或-5.
从而
.所以矩阵A的特征值是:-5,-5,0.
转载请注明原文地址:https://kaotiyun.com/show/bik4777K
0
考研数学二
相关试题推荐
设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.(1)求A的属于特征值3的特征向量.(2)求矩阵A.
求微分方程y"+4y’+4y=e-2x的通解.
没A是n阶反对称矩阵,证明:如果A是A的特征值,那么一A也必是A的特征值.
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)0(x∈(0,1));
已知三元二次型xTAx的平方项系数均为Ω设α=(1,2,一1)T且满足Aα=2α.求正交变换x=Qy化二次型为标准形.并写出所用坐标变换.
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.写出与A相似的矩阵B;
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
用泰勒公式求下列极限:
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
随机试题
汉字“川”的区位码为“2008”,正确的说法是()。
男性患者,60岁,4h前活动中突然头痛,以左侧为重,呈持续性胀、跳痛,程度较剧烈,同时出现右侧肢体活动不灵及言语不能,呕吐胃内容物3次。既芒压病史11年。查体:嗜睡,完全性运动性失语,查体欠合作,右侧面部痛觉减退,右侧中枢性面、舌瘫,右侧肢体肌力3级,右侧
甲房地产公司与乙国有工业公司签订《合作协议》。在乙公司原有的仓库用地上开发商品房。双方约定,共同成立“玫园置业有限公司”(以下简称“玫园公司”)。甲公司投入开发资金,乙公司负责将该土地上原有的划拔土地使用权转变为出让土地使用权,然后将出让土地使用权作为出资
下列时间中应该计入定额时间的是()。
根据《安全生产许可证条例》,企业取得安全生产许可证,应当具备的安全生产条件有()。
某次地震使一学校房屋多处发生开裂,多处结构破坏,可称为地震作用产生的()效果。
工资及职工福利费、职工工会经费和职工教育经费超标准列支的金额是()万元。在计算应纳税所得额时,允许扣除的业务招待费金额为()万元。
下列图书中,无法查到成语“姹紫嫣红”相关资料的是()。
下面不正确的叙述是()。
Listenagaintopartofthelecture.Thenanswerthequestion.Whatdoestheprofessorimplyaboutthefallingofleaves?
最新回复
(
0
)