首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内一阶可导,求证: 若f(x)在(一∞,+∞)内二阶可导,又存在极限,则存在ξ∈(一∞,+∞),使得f’’(ξ)=0.
设f(x)在(一∞,+∞)内一阶可导,求证: 若f(x)在(一∞,+∞)内二阶可导,又存在极限,则存在ξ∈(一∞,+∞),使得f’’(ξ)=0.
admin
2014-02-05
94
问题
设f(x)在(一∞,+∞)内一阶可导,求证:
若f(x)在(一∞,+∞)内二阶可导,又存在极限
,则存在ξ∈(一∞,+∞),使得f
’’
(ξ)=0.
选项
答案
反证法.若结论不成立,则[*]f
’’
(x)>0或f
’’
(x)<0.若[*]在(一∞,+∞)为凹函数,由题(I)[*]或[*],与已知矛盾.若[*]在(一∞,+∞)为凹函数,同样得矛盾.因此,存在ξ∈(一∞,+∞),使得f
’’
(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/YF34777K
0
考研数学二
相关试题推荐
(2015年)设D={(x,y)|x2+y2≤2x,x2+y2≤2y},函数f(x,y)在D上连续,则=()
(2017年)设a0=1,a1=0,(nan+an-1),(n=1,2,…),S(x)为幂级数的和函数。(I)证明幂级数的收敛半径不小于1;(Ⅱ)证明(1一x)S’(x)一xS(x)=0(x∈(一1,1)),并求S(x)的表达式。
(2012年)设函数f(x)==______。
(2016年)设函数f(x)连续,且满足∫0xf(x—t)dt=∫0x(x—t)f(t)dt+e-x一1,求f(x)。
(2006年)设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是()
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),b(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
二次型f(x1,x2,x3)=(x1+x2)2+(x2+x13)2-(x3-x1)2的正惯性指数与负惯性指数依次为()
设有3组二次型:第①组,f(x1,x2,x3)=x12+4x1x2+x22+x32,g(y1,y2,y3)=y12+y22+2y2y3+y32;第②组,f(x1,x2,x3)=λ1x12+λ2x22+λ3x32,g(y1,y2,y3)=
设F(u,v)可微,y=y(x)由方程F[xex+y,f(xy)]=x2+y2所确定,其中f(x)是连续函数且满足关系式∫1xyf(t)dt=x∫1yf(t)dt+y∫1xf(t)dt,x,y>0,又f(1)=1,求:
非负连续函数f(x)满足f(0)=0,f(1)=1,已知以曲线y=f(x)为曲边,以[0,x]为底的曲边梯形,其面积与f(x)的n+1次幂成正比,则f(x)的表达式为________.
随机试题
绘画作品《亚威农少女》的创作风格属于【】
功能矫治器最常用于
根据1961年《维也纳外交关系公约》,外交代表在驻在国享有一定的特权与豁免,下列有关管辖豁免的说法正确的有:()
公共建筑及综合性建筑,总高度超过()的为高层,但不包括总高度超过这个范围的单层建筑。
承包单位对施工合同实施偏差进行分析,其内容包括:产生合同偏差的原因分析,合同实施偏差的责任分析及()。
权利人对他人所有的不动产或者动产,依法享有占有、使用和收益的权利是()。
国务院期货监督管理机构依法履行职责,可以采取的措施有()。
设y=y(χ,z)是由方程eχ+y+z=χ2+y2+z2确定的隐函数,则=_______.
InShanghai,agrowingnumberofforeign-fundedbanksarelookingforlocalpeopletofillexecutivepositions(行政主管的岗位)rathert
A、Two.B、Five.C、Three.D、Four.A题目询问女士周三有几节课,我们可以由“Ionlyhavetwo...”(我只有曲节课)一句可以知道女士有一天有两节踝,而且女士虽然没有说这两节课什么时间上的,但是根据前面说的都是周三的
最新回复
(
0
)