首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示.
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示.
admin
2021-11-09
62
问题
设向量组a
1
,a
2
,…,a
m
线性相关,且a
1
≠0,证明存在某个向量a
k
(2≤k≤m),使a
k
能由a
1
,a
2
,…,a
k-1
线性表示.
选项
答案
因为向量组a
1
,a
2
,…,a
n
线性相关,由定义知,存在不全为零的数λ
1
,λ
2
,…,λ
m
,使λ
1
a
1
+λ
2
a
2
+…+λ
m
a
m
=0.设λ
k
≠0,当k=1时,代入上式有λ
1
a
1
=0.又因为a
1
≠0,所以λ
1
=0,与假设矛盾,故k≠1.当λ
k
≠0且k≥2时,有[*]因此向量a
k
能由a
1
,a
2
,…,a
k-1
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/c0y4777K
0
考研数学二
相关试题推荐
设f(χ)=求f′(χ)并讨论其连续性.
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
设微分方程y〞-3y′+ay=-5e-χ的特解形式为Aχe-χ,则其通解为_______.
设函数y=f(χ)由方程χy+2lnχ=y4所确定,则曲线y=f(χ)在点(1,1)处的法线方程为_______.
设A,B均为n阶矩阵,且AB=A+B,则下列命题中,①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A—E恒可逆.正确的有()个.
当x≥0时,函数f(x)可导,有非负的反函数g(x),且恒等式成立,则函数f(x)=().
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=,证明:存在ε∈(0,2),使得f"’(ε)=2.
设A是m×n矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个。
设f(x)满足f(x)在x=0邻域二阶可导,f’(0)=0,且f’’(x)-xf’(x)=ex-1,则下列说法正确的是
一个容器的内表面侧面由曲线(0≤x≤2,y>0)绕x轴旋转而成,外表面由曲线x=在点的切线位于点与x轴交点之间的部分绕x轴旋转而成,此容器材质的密度为μ.求此容器自身的质量M及其内表面的面积S.
随机试题
帕金森病可用抽动秽语综合征可用
胆碱酯酶复能剂治疗有机磷农药中毒的作用是
双香豆素的作用是
确诊原发性免疫缺陷最重要的指标是
标准大气压时的自由液面下1m处的绝对压强为()。
下列凭证中,属于自制原始凭证的是()。
某公司2014年发生下列经济业务:(1)销售材料取得价款100万元,原材料成本为90万元;(2)处置固定资产形成净收益90万元;(3)出租无形资产收到租金60万元,无形资产摊销6万元;(4)接受非关联企业现金捐赠100万元;(5)商品售后融资租回作为固定资
宪法的本质在于,它是各种()对比关系的集中表现。
设曲线y=y(x)满足xdy+(x一2y)dx=0,且y=y(x)与直线x=1及x轴所围的平面图形绕x轴旋转所得旋转体的体积最小,则y(x)=()
ParentsintheUnitedStatestendtoasktheirchildrenWhatdoesthesurveyindicate?
最新回复
(
0
)