首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=min{(x一k)2,(x一k一2)2},k为任意实数,g(k)=∫01f(x)dx.求g(k)在一2≤k≤2上的最值.
设f(x)=min{(x一k)2,(x一k一2)2},k为任意实数,g(k)=∫01f(x)dx.求g(k)在一2≤k≤2上的最值.
admin
2021-07-05
49
问题
设f(x)=min{(x一k)
2
,(x一k一2)
2
},k为任意实数,g(k)=∫
0
1
f(x)dx.求g(k)在一2≤k≤2上的最值.
选项
答案
先求两抛物线y=(x—k)
2
和y=(x—k—2)
2
的交点,即(x—k)
2
=(x—k—2)
2
,也即 |x—k|=|x—k—2|. 于是,k—x=x—k—2,故x=k+1.有 [*] ①若—2≤k≤—1,即—1≤k+1≤0,故 当0≤x≤1时,x≥k+1,因此 f(x)=(x—k—2)
2
[*] 所以当—2≤k≤—1时, [*] ②若—1≤k≤0,即0≤k+1≤1,故 [*] 所以当—1≤k≤0时, [*] ③若0≤k≤2,即1≤k+1≤3,故 当0≤x≤1时,x≤k+1,因此f(x)=(x—k)
2
[*] 所以当0≤k≤2时, [*] 综上,当—2≤k≤2时, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/c2y4777K
0
考研数学二
相关试题推荐
对于实数x>0,定义对数函数依此定义试证:ln(xy)=lnx+lny(x>0,y>0).
设X与Y独立,证明:对任意实数x1,x2,y1,y2(x1
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=1,f(1)=0,则在(0,1)内至少存在一点ξ,使()
设f(x)是实数集上连续的偶函数,在(-∞,0)上有唯一的零点x0=-1,且fˊ(x0)=1,则函数的严格单调增区间是().
设f’(x0)=0,f’’(x0)﹥0,则必存在一个正数δ,使得()
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
已知微分方程y’’+by’+y=0的每个解都在区间(0,+∞)上有界,则实数b的取值范围是()
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)