首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=min{(x一k)2,(x一k一2)2},k为任意实数,g(k)=∫01f(x)dx.求g(k)在一2≤k≤2上的最值.
设f(x)=min{(x一k)2,(x一k一2)2},k为任意实数,g(k)=∫01f(x)dx.求g(k)在一2≤k≤2上的最值.
admin
2021-07-05
35
问题
设f(x)=min{(x一k)
2
,(x一k一2)
2
},k为任意实数,g(k)=∫
0
1
f(x)dx.求g(k)在一2≤k≤2上的最值.
选项
答案
先求两抛物线y=(x—k)
2
和y=(x—k—2)
2
的交点,即(x—k)
2
=(x—k—2)
2
,也即 |x—k|=|x—k—2|. 于是,k—x=x—k—2,故x=k+1.有 [*] ①若—2≤k≤—1,即—1≤k+1≤0,故 当0≤x≤1时,x≥k+1,因此 f(x)=(x—k—2)
2
[*] 所以当—2≤k≤—1时, [*] ②若—1≤k≤0,即0≤k+1≤1,故 [*] 所以当—1≤k≤0时, [*] ③若0≤k≤2,即1≤k+1≤3,故 当0≤x≤1时,x≤k+1,因此f(x)=(x—k)
2
[*] 所以当0≤k≤2时, [*] 综上,当—2≤k≤2时, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/c2y4777K
0
考研数学二
相关试题推荐
设A=,B=(A+kE)2(1)求作对角矩阵D,使得B~D.(2)实数k满足什么条件时B正定?
设f(x)是实数集上连续的偶函数,在(-∞,0)上有唯一的零点x0=-1,且fˊ(x0)=1,则函数的严格单调增区间是().
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。证明:至少存在一个非零向量可同时由a1,a2与Β1,Β2线性表示。
设f’(x0)=0,f’’(x0)﹥0,则必存在一个正数δ,使得()
若f(x)在开区间(a,b)内可导,且x1,x2是(a,b)内任意两点,则至少存在一点ξ,使下列诸式中成立的是()
已知微分方程y’’+by’+y=0的每个解都在区间(0,+∞)上有界,则实数b的取值范围是()
随机试题
男,70岁。因腹主动脉瘤在某市级医院接受手术治疗,术中发生大出血,经抢救无效死亡。其子女要求复印患者在该医院的全部病历资料,而院方只同意复印其中一部分。根据《医疗事故处理条例》规定,其子女有权复印的病历资料是()
某投资者L预期甲股票价格将会下跌,于是与另一投资者z订立卖出合约,合约规定有效期限为三个月,L可按每股10元的价格卖给Z5000股甲股票,期权价格为0.5元/股。根据上述情况,下面说法正确的是()。
下列哪些情况表明体内现有结核感染
青霉素类引起的过敏性休克首选
A.肺部给药B.皮内注射C.皮下注射D.肌内注射E.舌下含服心绞痛患者发作时用硝酸甘油的给药途径是()。
甲公司欲单独出资设立一家子公司。甲公司的法律顾问就此向公司管理层提供了一份法律意见书,涉及到子公司的设立、组织机构、经营管理、法律责任等方面的问题。请回答下列题目。(2010年试卷三第94~96题)关于子公司的组织机构与经营管理,下列说法正确的是:
宝马汽车博物馆位于德国慕尼黑。()
下列各句中,没有语病的一句是()。
如图,正四面体ABCD,P、Q分别是棱AB、CD的三等分点和四等分点(AB=3AP=4CQ),棱AC上有一点M,要使M到P、Q距离之和最小,则MC:MA=()。
1Scholarsandstudentshavealwaysbeengreattravelers.Theofficialcasefor"academicmobility"isnowoftenstatedini
最新回复
(
0
)