首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
admin
2020-02-28
56
问题
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
选项
答案
转化为证明某函数的二阶导数在(0,2)[*]零点.设 g″(x)= —4.令F(x)=f(x)—g(x)则[*]ξ∈(0,2),使f″(ξ)= —4[*]F″(ξ)=0. 注意g(x)= —2x
2
+c
1
x+c
2
,于是 F(0)=f(0)—g(0)= —c
2
, F(1)=f(1)—g(1)=4—c
1
—c
2
, F(2)=f(2)—g(2)=8—2c
1
—c
2
. 为使F(0)=F(1)=F(2),取c
1
=4,c
2
=0,F(x)=f(x)—g(x)=f(x)—(—2x
2
+4x)满足F(0)=F(1)=F(2)=0.由于函数F(x)在[0,2]上连续,在(0,2)内二阶可导,因而可在区间[0,1]与[1,2]上分别对函数F(x)应用罗尔定理,从而知分别存在η
1
∈(0,1)与η
2
∈(1,2)使得F′(η
1
)=F′(η
2
)=0,由题设知F′(x)在区间[η
1
,η
2
]上也满足罗尔定理的条件,再在区间[η
1
,η
2
]上对导函数F′(x)应用罗尔定理,又知存在ξ∈(η
1
,η
2
)[*](0,2)使得F″(ξ)=f″(ξ)—g″(ξ)=0,即f″(ξ)=g″(ξ)= —4成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/pWA4777K
0
考研数学二
相关试题推荐
微分方程满足y|x=1=1的特解为_________。
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
当x≥0,证明∫0x(t-t2)sin2ntdt≤,其中n为自然数.
设A是n阶非零实矩阵(n>2),并且AT=A*,证明A是正交矩阵.
设A为4阶矩阵,满足条件AAT=2E,|A|<0,其中E是4阶单位矩阵,求方阵A的伴随矩阵A*的一个特征值.
设齐次线性方程组其中a≠0,6≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设A=有三个线性无关的特征向量,求χ,y满足的条件.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
设f(χ)在[0,1]上二阶连续可导且f(0)=f(1),又|f〞(χ)|≤M,证明:|f′(χ)|≤.
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2)上的最大值、最小值.
随机试题
A.青霉素B.甲氨蝶呤C.环孢素AD.泼尼松E.氨基葡萄糖上述药物中,治疗类风湿关节炎首选的改善病情抗风湿药是
衍生金融工具包括()
肾小管分泌钾离子的主要部位是【】
女性,56岁,高血压、糖尿病史3年,突发胸前区疼痛3h入院。心电图标准12导联是Ⅱ、Ⅲ及aVFST段抬高,病理性Q波,血压85/60mmHg,心率110次/分,心脏三尖瓣区可闻SM2~3/6返流样杂音,双肺呼吸音清,劲V怒张,肝肋下1cm。该例目前的诊断应
A.葡萄胎B.胎盘早剥C.前置胎盘D.前置血管E.破裂妊娠33周,反复无痛性阴道出血3次,最可能的诊断是
属于嘌呤类抗代谢的抗肿瘤药是()。
应急免疫是一种消极的债券组合管理策略。()
分析市场发展过程中变量的相互关系,寻因索果,解决“为什么”等问题的调查方式是()。
影视光源主要包括()。
Although"namingrights"haveproliferatedinAmericanhighereducationforthepastseveraldecades,thephenomenonhasrecentl
最新回复
(
0
)