首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
admin
2020-02-28
100
问题
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
选项
答案
转化为证明某函数的二阶导数在(0,2)[*]零点.设 g″(x)= —4.令F(x)=f(x)—g(x)则[*]ξ∈(0,2),使f″(ξ)= —4[*]F″(ξ)=0. 注意g(x)= —2x
2
+c
1
x+c
2
,于是 F(0)=f(0)—g(0)= —c
2
, F(1)=f(1)—g(1)=4—c
1
—c
2
, F(2)=f(2)—g(2)=8—2c
1
—c
2
. 为使F(0)=F(1)=F(2),取c
1
=4,c
2
=0,F(x)=f(x)—g(x)=f(x)—(—2x
2
+4x)满足F(0)=F(1)=F(2)=0.由于函数F(x)在[0,2]上连续,在(0,2)内二阶可导,因而可在区间[0,1]与[1,2]上分别对函数F(x)应用罗尔定理,从而知分别存在η
1
∈(0,1)与η
2
∈(1,2)使得F′(η
1
)=F′(η
2
)=0,由题设知F′(x)在区间[η
1
,η
2
]上也满足罗尔定理的条件,再在区间[η
1
,η
2
]上对导函数F′(x)应用罗尔定理,又知存在ξ∈(η
1
,η
2
)[*](0,2)使得F″(ξ)=f″(ξ)—g″(ξ)=0,即f″(ξ)=g″(ξ)= —4成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/pWA4777K
0
考研数学二
相关试题推荐
∫01xarcsinxdx=_________.
A是三阶矩阵,三维列向量组β1,β2,β3线性无关,满足Aβ1=β2+β3,Aβ2=β1+β3,Aβ3=β1+β2,求|A|.
已知下列非齐次线性方程组(I),(II):(1)求解方程组(I),用其导出组的基础解系表示通解;(2)当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解?
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
求不定积分
设f(x)在[a,b]上可导,在(a,b)内二阶可导,f(a)=f(b)=0,f’(a).f’(b)>0.试证:1)ξ∈(a,b),使f(ξ)=0.2)η∈(a,b),使f"(η)=f(η).
设z=f(2z-y,ysinχ),其中f(u,v)具有连续的二阶偏导数,求
求下列不定积分:
矩形闸门宽a米,高h米,垂直放在水中,上边与水面相齐,闸门压力为().
随机试题
A.暂禁食B.低蛋白饮食C.温凉流质饮食D.低盐饮食E.禁蛋白饮食肝硬化腹水
属油溶液型注射剂的是
肉孢子虫孢子化卵囊的特征为()。
胃痛的主要病变脏腑在胃,与哪些脏腑关系最密切()
()购买国债是叠加在原有总需求之上的扩张总需求。
李某带着8岁的儿子买肉时,与摊主发生争执,继而互殴。李某被摊主打成重伤。如果该案进入刑事诉讼程序,李某的儿子可以为()。
德国心理学家——认为:心理学有一个漫长的过去,却只有一段短暂的历史。
以下关于菜单的叙述中,错误的是_________。
Sample是一个类,执行下面语句后,调用Sample类的构造函数的次数是()。Samplea[2],*p=newSample;
Wheredoestheconversationmostprobablytakeplace?
最新回复
(
0
)