首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
admin
2020-02-28
62
问题
设f(x)在[0,2]上连续,在(0,2)内具有二阶导数,且f(0)=f(2)=0,f(1)=2.求证:至少存在一点ξ∈(0,2)使得f″(ξ)=—4.
选项
答案
转化为证明某函数的二阶导数在(0,2)[*]零点.设 g″(x)= —4.令F(x)=f(x)—g(x)则[*]ξ∈(0,2),使f″(ξ)= —4[*]F″(ξ)=0. 注意g(x)= —2x
2
+c
1
x+c
2
,于是 F(0)=f(0)—g(0)= —c
2
, F(1)=f(1)—g(1)=4—c
1
—c
2
, F(2)=f(2)—g(2)=8—2c
1
—c
2
. 为使F(0)=F(1)=F(2),取c
1
=4,c
2
=0,F(x)=f(x)—g(x)=f(x)—(—2x
2
+4x)满足F(0)=F(1)=F(2)=0.由于函数F(x)在[0,2]上连续,在(0,2)内二阶可导,因而可在区间[0,1]与[1,2]上分别对函数F(x)应用罗尔定理,从而知分别存在η
1
∈(0,1)与η
2
∈(1,2)使得F′(η
1
)=F′(η
2
)=0,由题设知F′(x)在区间[η
1
,η
2
]上也满足罗尔定理的条件,再在区间[η
1
,η
2
]上对导函数F′(x)应用罗尔定理,又知存在ξ∈(η
1
,η
2
)[*](0,2)使得F″(ξ)=f″(ξ)—g″(ξ)=0,即f″(ξ)=g″(ξ)= —4成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/pWA4777K
0
考研数学二
相关试题推荐
设A=,则=_______.
作自变量与因变量变换:u=x+y,v=x-y.w=xy-z.变换方程为w关于u,v的偏微分方程,其中z对x,y有连续的二阶偏导数.
交换积分次序并计算
设b1=a1,b2=a1+a2,…,br=a1+a2+…+ar,且向量组a1,a2,…,ar线性无关,证明向量组b1,b2,…,r线性无关.
设A~B,求可逆矩阵P,使得p-1AP=B.
设在[0,+∞]上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0.证明:f(x)在(0,+∞)内有且仪有一个零点.
设Am×n,r(A)=m,Bn×(n一m),r(B)=n一m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
设f(x)在闭区间[1,2]上可导,证明:ξ∈(1,2),使f(2)一2f(1)=ξf’(ξ)一f(ξ).
求不定积分
设y=f(χ)为区间[0,1]上的非负连续函数.(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;(2)设f(χ)在(0,1)内可导,且f′(χ)>-
随机试题
小中取大法是指在决策时,首先计算各方案在不同自然状态下的收益,并找出各方案在最差自然状态下的收益,然后进行比较,选择在最差自然状态下收益最大或损失最小的方案作为最终方案的一种决策方法。大中取大法是指在决策时,首先计算各方案在不同自然状态下的收益,并找出各方
“在谈判的前期,无论对方作何表示,己方始终坚持初始报价,不愿作丝毫的退让。而到了谈判后期或迫不得已的时候,却作出大步的退让。”具有上述特点的是()
下列应该优先抢救的急症包括
一贯煎的病变脏腑是
对支原体肺炎具有重要诊断意义的是
在同一正态总体中抽样有99%的样本均数在下述范围内
会计行政法规是指( )。
下列对商品进行宣传的行为中,符合法律规定的是()。
亚里士多德的教育思想集中体现在《政治学》中。()
面向对象程序设计的基本思想是封装和可扩展性,可扩展性体现在【】和行为扩展两个方面。
最新回复
(
0
)