首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上连续,在(0,1)内可导,且|f′(χ)|<1,又f(0)=f(1),证明:对于χ1,χ2∈[0,1],有|f(χ1)-f(χ2)|<.
设f(χ)在[0,1]上连续,在(0,1)内可导,且|f′(χ)|<1,又f(0)=f(1),证明:对于χ1,χ2∈[0,1],有|f(χ1)-f(χ2)|<.
admin
2017-04-11
37
问题
设f(χ)在[0,1]上连续,在(0,1)内可导,且|f′(χ)|<1,又f(0)=f(1),证明:对于
χ
1
,χ
2
∈[0,1],有|f(χ
1
)-f(χ
2
)|<
.
选项
答案
联系f(χ
1
)-f(χ
2
)与f′(χ)的是拉格朗日中值定理.不妨设0≤χ
1
≤χ
2
≤1.分两种情形: 1)若χ
2
-χ
1
<[*],直接用拉格朗日中值定理得 |f(χ
1
)-f(χ
2
)|=|f′(ξ)(χ
2
-χ
1
)|=|f′(ξ)||χ
2
-χ
1
|<[*]. 2)若χ
2
-χ
1
≥[*],当0χ
1
<χ
2
<1时,利用条件f(0)=f(1)分别在[0,χ
1
]与[χ
2
,1]上用拉 格朗日中值定理知存在ξ∈(0,χ
1
),η∈(χ
2
,1)使得 |f(χ
1
)-f(χ
2
)|=|[f(χ
1
)-f(0)]-[f(χ
2
)-f(1)]| ≤|f(χ
1
)-f(0)|+|f(1)-f(χ
2
)| =|f′(ξ)χ
1
|+|f′(η)(1-χ
2
)| <χ
1
+(1-χ
2
)=1-(χ
2
-χ
1
)≤[*], ①当χ
1
>0且χ
2
≥[*]时,有 |f(χ
1
)-f(χ
2
)|=|f(0)-f(χ
2
)|=|f(1)-f(χ
2
)|=|f′(η)(1-χ
2
)|<[*]. ②当χ
1
≤[*]且χ
2
=1时,同样有 |f(χ
1
)-f(χ
2
)|=|f(χ
1
)-f(1)|=|f(χ
1
)-f(0)|=|f′(ξ)(χ
1
-0)|<[*]. 因此对于任何χ
1
,χ
2
∈[0,1]总有 |f(χ)-f(χ)<[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/c3t4777K
0
考研数学二
相关试题推荐
[*]
将函数展开成x-1的幂级数,并指出其收敛区间。
设
求幂级数在区间(-1,1)内的和函数S(x).
设un=(-1)n,则级数________。
设函数y=y(x)由方程sinxy+ln(y-x)=x确定,求dy/dx|x=0.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
(2002年)某闸门的形状与大小如图2.11所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
随机试题
社会工作者:“小萍,我们归纳一下,你刚才讲的主要有两点,第一是疫情期间在家上网课,缺少学校氛围,有点松懈,学习状态和效率都让你不满意;第二是明年要毕业了,究竟是考研出国还是回老家找份工作,你有点迷茫。你看我说的有遗漏吗?”上述表述中,社会工作者运用的谈话技
两种材料界面上的反射因子大小主要取决于声波穿过界面时的什么变化()
A.应取得《进口药品注册证》B.应凭《医药产品注册证》C.应取得《进口准许证》D.应取得《药品经营许可证》E.应取得《进口药品通关单》依照《中华人民共和国药品管理法实施条例》
静脉采血取检验样本,首先应该采取下列哪种样本?()
根据材料,下列说法中正确的有()。Ⅰ.2008年山东省城乡居民分类消费价格与居民消费分类价格变化趋势完全一致Ⅱ.2008年山东省居民各种食品消费中,城市价格变化均小于农村Ⅲ.2008年在图中所示的几个价格指数中,山东省原材料、燃料、动力购
物业管理应用文书的类型不包括()。
《红梅赞》是歌剧()的主题歌。
数据库管理系统管理并且控制______资源的使用。
以下叙述中正确的是()。
Inthecauseofequalrights,feminists(女权主义者)havehadmuchtocomplainabout.Butonestrikingpieceofinequalityhasbeen【C1】
最新回复
(
0
)