设f(x)为连续函数,证明∫0xf(t)(x-t)dt=∫0x(∫0tf(u)du)dt.

admin2022-10-08  43

问题 设f(x)为连续函数,证明∫0xf(t)(x-t)dt=∫0x(∫0tf(u)du)dt.

选项

答案利用分部积分法,有 ∫0x(∫0tf(u)du)dt=t∫0tf(u)du|0x-∫0xtf(t)dt =x∫0xf(t)dt-∫0xtf(t)dt=∫0xf(t)(x-t)dt 即∫0xf(t)(x-t)dt=∫0x(∫0tf(u)du)dt.

解析
转载请注明原文地址:https://kaotiyun.com/show/D4R4777K
0

最新回复(0)