首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,α1=,向量α2,α3满足Aα2=α1,A2α3=α1。 证明:α1,α2,α3线性无关。
设A=,α1=,向量α2,α3满足Aα2=α1,A2α3=α1。 证明:α1,α2,α3线性无关。
admin
2022-03-23
51
问题
设A=
,α
1
=
,向量α
2
,α
3
满足Aα
2
=α
1
,A
2
α
3
=α
1
。
证明:α
1
,α
2
,α
3
线性无关。
选项
答案
方法一 由上一问得知,α
2
=(k
1
,-k
1
,2k
1
+1)
T
,α
3
=(-[*]-k
2
,k
2
,k
3
)
T
,其中k
1
,k
2
,k
3
为任意常数 |α
1
,α
2
,α
3
|=[*] 故α
1
,α
2
,α
3
线性无关。 方法二 设存在一组数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 (*) 由Aα
1
=0,则(*)式两边同时左乘A,有 k
2
Aα
2
+k
3
Aα
3
=0,即k
2
α
1
+k
3
Aα
3
=0 (**) (**)式两边同时左乘A,有k
3
2
A
2
α
3
=0,即k
3
α
1
=0,由α
1
≠0可得,k
3
=0. 代入(**)式,得k
2
=0 将k
2
=k
3
=0代入(*)式得k
1
=0,故α
1
,α
2
,α
3
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/cBR4777K
0
考研数学三
相关试题推荐
设函数,连续,若,其中区域Dun为图中阴影部分,则
设x2+y2≤2ay(a>0),则f(x,y)dxdy在极坐标下的累次积分为().
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且f’’(x)-xf’(x)=ex-1,则下列说法正确的是
线性方程组的通解可以表示为
设随机变量X1,…,X2,…相互独立,记Yn=X2n-X2n-1(n≥1),根据大数定律,当n→∞时依概率收敛到零,只要{Xn,n≥1}
求函数在点P(-1,3,-3)处的梯度以及沿曲线x(t)=-t2,y(t)=3t2,z(t)=-3t3在点P函数增大的切线方向的方向导数.
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).设P(5位顾客全部购买滚筒洗衣机)=0.0768,P(5位顾客全部购买直筒洗衣机)=0.0102,那么两类洗衣机都至少卖出一台的概率是多大?
[*][*]【思路探索】根据无穷小与极限之间的关系表示f(x),综合运用极限的四则运算法则及洛必达法则即得结果.
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
求的间断点,并判断其类型.
随机试题
反映血中H2CO3浓度的最佳指标是哪一项
A、Waterispouredintotheear.B、Itisthesafestmethodofall.C、Coldwatershouldbeused.D、Itcanberepeatedseveraltime
女性,45岁,2个月前发现右乳外上象限有一肿块,直径约0.8cm,质地硬,边界不清。乳房穿刺活检可见乳房小叶腺泡扩张,其内充满异型性明显的大细胞,核大、深染,核仁明显,但腺泡基底膜完整,间质内未见肿瘤细胞浸润。下列诊断中,符合本病的是
触诊心尖搏动在心浊音界内侧的疾病是
三仁汤的功效是
修正大总统选举法
在编制资产负债表时,下列各项中,需要根据其明细科目及“预付账款”明细科目的余额填列的有()。
下列关于设立有限责任公司的表述中,符合《公司法》规定的有()。
国债的利息收入需缴纳所得税。()
下列关于构造函数的叙述中,正确的是()。
最新回复
(
0
)