首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy.
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy.
admin
2019-04-17
62
问题
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,
f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
xyf"xy(x,y)dxdy.
选项
答案
因为f(1,y)=0,f(x,1)=0,所以f
y
’
(1,y)=0,f
x
’
(x,1)=0. 从而 I=∫
0
1
xdx∫
0
1
yf(x,y)dy=∫
0
1
x[yf
x
’
(x,y)∫
0
1
一f
x
’
(x,y)dy]dx =一∫
0
1
dy∫
0
1
xf
x
’
(x,y)dx=一∫
0
1
[xf(x,y)|
x=0
x=1
一∫
0
1
f(x,y)dx]dy =∫
0
1
dy∫
0
1
f(x,y)dx=a. a=∫
0
1
dy∫
0
1
f(x,y)dx =∫
0
1
[xf(x,y)|
x=0
x=1
一∫
0
1
xf
x
’
(x,y)dx]dy =一∫
0
1
dx∫
0
1
xf
x
’
(x,y)dy =一∫
0
1
[xf
x
’
(x,y)=|
y=0
y=1
一∫
0
1
xyf
xy
"
(x,y)dy]dx =[*]xy f
xy
"
(x,y)dσ 这里用到了条件f(1,y)=0,f(x,1)=0,并由此有f
y
’
(1,y)=0,f
x
’
(x,1)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/cDV4777K
0
考研数学二
相关试题推荐
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a、b为何值时,g(x)在x=0处连续。
设f(x)=∫01|x-y|sin,求f"(x).
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B,证明:B可逆,并推导A-1和B-1的关系.
设函数f(u)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz|(1,1)=__________。
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
求不定积分
求下列函数的带皮亚诺余项至括号内所示阶数的麦克劳林公式:(Ⅰ)f(χ)=eχcosχ(χ3);(Ⅱ)f(χ)=(χ3);(Ⅲ)f(χ)=,其中a>0(χ2).
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
设m,n均是正整数,则反常积分∫01dx的收敛性()
设f(x)在[a,b]上可导,且f’(a).f’(b)<o.试证:存在ξ∈(a,b),使f’(ξ)=0.
随机试题
教师的基本职责是()
股骨颈骨折的体征不包括
患者气血不足所致眩晕证的治疗主要取
10(6)kV变电所非燃(或难燃)介质的电力变压器室、高压配电装置室和高压电容器室的耐火等级不应低于一级。()
甲公司是一家上市公司,有关资料如下:资料一:2013年3月31日甲公司股票每股市价25元。每股收益2元;股东权益项目构成如下:普通股4000万股,每股面值1元,计4000万元;资本公积1500万元;留存收益9500万元。公司目前国债利息率为4%,市场
喜欢作为一种常见的人际吸引形式,受诸多因素的影响,其中包括()。
我国公安部规定,公安机关进行现场执法活动时,应当进行现场执法视音频记录。这体现了我国公安机关()。
法律主要体现的是()的意志。
经济学家:有人主张对居民的住房开征房产税,其目的是抑制房价,或为地方政府开拓稳定的税源,或调节贫富差别。如果税收不是一门科学,如果税收没有自身运行的规律,那么,根据某些官员的意志而决定开征房产税就是可能的。房产税是财产税,只有我国的税务机关达到征收直接税和
STOPSMOKINGDoyouwanttostopsmoking?Haveyoualreadytriedtostopbutfailed?Nowit’stimetostopsmokingusingthe
最新回复
(
0
)