首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]连续,且∈[a,b],总∈[a,b],使得|f(y)|≤|f(x)|.试证:∈[a,b],使得f(ξ)=0.
设f(x)在[a,b]连续,且∈[a,b],总∈[a,b],使得|f(y)|≤|f(x)|.试证:∈[a,b],使得f(ξ)=0.
admin
2018-06-27
33
问题
设f(x)在[a,b]连续,且
∈[a,b],总
∈[a,b],使得|f(y)|≤
|f(x)|.试证:
∈[a,b],使得f(ξ)=0.
选项
答案
反证法.若在[a,b]上f(x)处处不为零,则f(x)在[a,b]上或恒正或恒负.不失一般性,设f(x)>0,x∈[a,b],则[*]x
0
∈[a,b],f(x
0
)=[*].由题设,对此x
0
,[*]∈[a,b],使得 f(y)=|f(y)|≤[*]f(x
0
)=[*]f(x
0
)<f(x
0
), 与f(x
0
)是最小值矛盾.因此,[*]∈[a,b],使f(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/oek4777K
0
考研数学二
相关试题推荐
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(1)证明α1,α2,α3线性无关;(2)令P=(α1,α2,α3),求P-1AP.
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*等于
设,则极限等于
处的值为_______.
设S表示夹在x轴与曲线y=F(x)之间的面积.对任何t>0,S1(t)表示矩形-t≤x≤t,0≤y≤F(t)的面积.求:(1)S(t)=S—S1(t)的表达式;(2)S(t)的最小值.
设向量组α1,α2,…αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+α1,线性无关.
没A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx.
函数f(x)在求导数f’(x);
随机试题
衡量小儿营养状况最常用的指标是
对药理学定义的叙述,正确的一项是
激光打印机的特点是()。
无产阶级最可靠的同盟军是
某工程施工至某年5月份底,检查时得下图所示曲线,则有()。
一般讲,流动性高的金融资产具有的特点是()。
下列行为中,属于民事行为的是()。
,1,5,17,53,()。
“雕”牌洗衣粉是一种市场知名度非常高的产品。近期,消费者李先生在市场上误购了一种商标不同,但外包装与“雕”牌洗衣粉酷似的“周佳”牌洗衣粉,其价格只有“雕”牌洗衣粉的三分之一。李先生使用后发现为不合格产品,遂向“雕”牌洗衣粉的生产厂家投诉。如果“雕”牌生产厂
根据说明中的描述,使用表3-1给出的类的名称,给出图3-1中的A~F所对应的类。根据说明中的描述,给山图3-1中(1)~(6)处的多重度。
最新回复
(
0
)