首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知常数k≥ln2—1,证明:(x一1)(x一ln2x+2klnx一1)≥0.
已知常数k≥ln2—1,证明:(x一1)(x一ln2x+2klnx一1)≥0.
admin
2019-03-21
93
问题
已知常数k≥ln2—1,证明:(x一1)(x一ln
2
x+2klnx一1)≥0.
选项
答案
当x=1时,显然所证成立. 当x≠1时,令f(x)=x一ln
2
x+2klnx一1(x>0),求导得 [*] 令g(x)=x一2lnx+2k,求导得 [*] 令g’(x)=0,得驻点x=2. ①当0<x<1时,g’(x)<0,因此g(x)在(0,1)上单调递减,则 g(x)>g(1)=1+2k≥1+2(ln2—1)=2ln2—1>0. 因此f’(x)>0,f(x)在(0,1)上单调递增,故f(x)<f(1)=0. 在(0,1)上,由x一1<0,f(x)<0,可得 (x一1)(x一ln
2
x+2klnx一1)>0. ②当x>1时,可知当1<x<2时,g’(x)<0;当x>2时,g’(x)>0. 因此g(x)在(1,2)上单调递减,在(2,+∞)上单调递增,则 g(x)>g(2)=2—2ln2+2k≥2—2ln2+2(ln2—1)=0. 因此f’(x)>0,f(x)在(1,+∞)上单调递增,故f(x)>f(1)=0. 在(1,+∞)上,由x一1>0,f(x)>0,可得 (x一1)(x一ln
2
x+2klnx一1)>0. 综上所述:当x>0时,不等式(x一1)(x一ln
2
x+2klnx一1)≥0恒成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/cGV4777K
0
考研数学二
相关试题推荐
设0<x1<x2,f(x)在[x1,x2]可导,证明:在(x1,x2)内至少一个c,使得
证明:当x>1时
设f(x)在(-∞,+∞)内二次可导,令F(x=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
求以半径为R的圆为底,平行且等于底圆直径的线段为顶,高为h的正劈锥体的体积.
求曲线r=a(1+cosθ)的曲率.
设a>0为常数,求积分I=xy2dσ,其中D:x2+y2≤ax.
求下列二重积分:(Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1;(Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1;(Ⅲ)I=,其中D由直线x=-2,y=0,y=2及曲线x=所围成.
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
已知一条抛物线通过x轴上两点A(1,0),B(3,0),求证:两坐标轴与该抛物线所围成的面积等于x轴与该抛物线所围成的面积.
求由曲线x2=ay与y2=ax(a>0)所围平面图形的质心(形心)(如图3.34).
随机试题
金属材料的化学性能是指金属材料发生化学反应的能力。()
寒邪食积,大便不通宜用身面浮肿,胸胁积液宜用
评定生产技术方案最基本的标准是()。
受法律保护的物权有( )。
根据公司法律制度的规定,当公司出现特定情形,继续存续会使股东利益受到重大损失,通过其他途径不能解决,持有公司全部股东表决权10%以上的股东提起解散公司诉讼的,人民法院应当受理。下列各项中,属于此类特定情形的是()。
个人取得下列各项所得,必须自行申报纳税的有()。
分析指将整体材料分解成其构成成分并理解组织结构,包括对要素的分析、________的分析、组织原理的分析。
西方宗教学的奠基人麦克斯.缨勒解释道:“宗教是一种内心的本能或气质,它独立地、不借助感觉和理性,能使人们领悟在不同名称和各种伪装下的无限。”把宗教解释为“独立地、不借助感觉和理性”而领悟“无限”的才能,真是高明之极。让宗教站在“无限”上,也就一劳永逸地摆脱
0,15,26,15,4,()。
文档“北京政府统计工作年报.docx”是一篇从互联网上获取的文字资料,请打开该文档并按下列要求进行排版及保存操作:除封面页和目录页外,在正文页上添加页眉,内容为文档标题“北京市政府信息公开工作年度报告”和页码,要求正文页码从第l页开始,其中奇数页眉居右
最新回复
(
0
)