首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,证明:x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单凋减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
设f(x)在(a,b)内可导,证明:x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单凋减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
admin
2017-05-31
36
问题
设f(x)在(a,b)内可导,证明:
x,x
0
∈(a,b)且x≠x
0
时,f’(x)在(a,b)单凋减少的充要条件是
f(x
0
)+f’(x
0
)(x-x
0
)>f(x). (*)
选项
答案
必要性:设(*)成立,[*]x
1
,x
2
∈((a,b)且x
1
<x
2
=> f(x
2
)<f(x
1
)+f’(x
1
)(x
2
-x
1
),f(x
1
)<f(x
2
)+f’(x
2
)(x
1
-x
2
). 两式相加 => [f’(x
1
)-f’(x
2
)](x
2
-x
1
)>0 =>f’(x
1
)>f’(x
2
),即f’(x)在(a,b)单调减少. 充分性:设f’(x)在(a,b)单调减少.对于[*]x,x
0
∈(a,b)且x≠x
0
,由微分中值定理得 f(x)-[f(x
0
)+f’(x
0
)(x-x
0
)]=[f’(ξ)-f’(x
0
)](x-x
0
)<0, 其中ξ在x与x
0
之间,即(*)成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/Grt4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,证明:∫abf(x)dx=(b-a)∫01f[a+(b-a)x]dx.
曲线y=(x-1)(x-2)和x轴围成平面图形,求此平面图形绕y轴旋转一周所成的旋转体的体积.
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|,又f(1)=0,证明:|∫01f(x)dx|≤1/2ln2.
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
求z=x2+12xy+2y2在区域4x2+y2≤25上的最值.
若f(x)在点x=x。处可导,则下列各式中结果等于fˊ(x。)的是[].
求下列极限:
求下列各函数的导数(其中a为常数):
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
随机试题
若对某疾病进行流行病学的研究,选用病例对照调查。研究中应注意混杂因素的影响,混杂因素是指
【2010年第4题】题11~15:一座110/10kV有人值班的重要变电所,装有容量为20MVA的主变压器两台,采用220V铅酸蓄电池作为直流电源,所有断路器配电磁操作机构,最大一台断路器合闸电流为98A。请回答以下问题,并列出解答过程。该变电所选择一
国家防汛总指挥部的指挥长由()担任。
我国签证的种类主要有()。
根据《中华人民共和国劳动法》的规定,关于用人单位与劳动者之间劳动争议的解决,以下说法正确的是( )。
威尔和埃克斯这两家公司,对使用他们的字处理软件的顾客,提供24小时的热线电话服务。既然顾客仅在使用软件有困难时才打电话,并且威尔收到的热线电话比埃克斯收到的热线电话多四倍,因此,威尔的字处理软件一定是比埃克斯的字处理软件难用。下列哪项如果为真,则最能够有效
根据费雪效应,一国通货膨胀率上升,该国名义利率及货币对外价值的变化为(
号称“中国17世纪的工艺百科全书”的是()。
一个字符的标准ASCII码码长是()。
WhyareAmericanbillsorpapermoneyunlikethatinmanyothercountries?
最新回复
(
0
)