首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的凡阶无穷小,求证:f(x)的导函数f′(x)当x→a时是x-a的n-1阶无穷小.
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的凡阶无穷小,求证:f(x)的导函数f′(x)当x→a时是x-a的n-1阶无穷小.
admin
2016-10-26
62
问题
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的凡阶无穷小,求证:f(x)的导函数f′(x)当x→a时是x-a的n-1阶无穷小.
选项
答案
f(x)在x=a可展成 f(x)=f(a)+f′(a)(x一a)+[*]f″(a)(x一a)2+…+[*]f
(n)
(a)(x一a)
n
+o((x一a)
n
)(x→a). 由x→a时f(x)是(x→a)的n阶无穷小[*] f(a)=f′(a)=…=f
(n-1)
(a)=0,f
(n)
(a)≠0. 由g(x)=f′(x)在x=a处n一1阶可导[*] [*] 因此f′(x)是x-a的n-1阶无穷小(x→a).
解析
转载请注明原文地址:https://kaotiyun.com/show/cUu4777K
0
考研数学一
相关试题推荐
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
(I)由题设,AX=β的解不唯一,从而其系数矩阵的秩与增广矩阵阵的秩相同但小于对增广矩阵做初等行变换,得[*]
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等,以X表示汽车首次遇到红灯前已通过的路口的个数,求X的概率分布(信号灯的工作是相互独立的).
y=2x的麦克劳林公式中xn项的系数是_________.
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
极限=_________.
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在.写出f(x)的带拉格朗日余项的马克劳林公式;
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;
随机试题
清燥救肺汤的君药是
患儿,男,11个月,因呕吐,腹泻3天来院,初步诊断为腹泻伴脱水。考虑该患儿为等渗性脱水,补液治疗首选的液体是()
在特别任务法的培训任务中,委员会或初级董事会是为()提供的。
我国传统文化宣传孔融让梨,表扬他把最好的给兄弟姐妹,最差的留给自己,这种教育的特点是强调自觉。古罗马人不是这样。为了解决军队中出现的严重不公平现象,他们没有找一个榜样来教育人,而是着眼于制度设计。比如两个士兵得到一个面包,按规定其中一个负责切割,另一个人则
大型网络通常使用动态分配IP地址的配置方案,当用户第一次登录网络时广播一个(32)请求包,DHCP服务器以(33)应答包提供可租用的IP地址,然后再经过一次握手确认,用户就获得了可用的IP地址。(33)
Oracle针对Internet/Intranet的产品是
下述程序的输出结果是()。#includevoidmain(){inta[5]:{1,2,3,4,5};int*p=a,**q=&p;printf(“%d”,*(p++));
StudyActivitiesinUniversityInordertohelpcollegeanduniversitystudentsintheprocessoflearning,fourkeystudya
互惠互利
A、Sheclosedherfreeblogservicelastweek.B、Shewasupsetwhenherfavoritesitewasclosed.C、Herwebsiteisstillstronga
最新回复
(
0
)