首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,α1=(α,-α,1)T是方程组AX=0的解,α2=(α,1,1-α)T是方程组(A+E)X=0的解,则a=________.
设A为三阶实对称矩阵,α1=(α,-α,1)T是方程组AX=0的解,α2=(α,1,1-α)T是方程组(A+E)X=0的解,则a=________.
admin
2021-11-25
25
问题
设A为三阶实对称矩阵,α
1
=(α,-α,1)
T
是方程组AX=0的解,α
2
=(α,1,1-α)
T
是方程组(A+E)X=0的解,则a=________.
选项
答案
a=1
解析
因为A为三阶实对称矩阵,所以不同特征值对应的特征向量正交。
因为AX=0及(A+E)X=0有非零解,所以λ
1
=0,λ
2
=-1为矩阵A的特征值,α
1
=(α,-a,1)
T
,α
2
=(α,1,1-a)
T
是它们对应的特征向量,所以有α
1
T
α
2
=α
2
-a+1-a=0,解得a=1.
转载请注明原文地址:https://kaotiyun.com/show/ciy4777K
0
考研数学二
相关试题推荐
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解。
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解。
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=E-3A|=0,则|B-1+2E|=________.
下列命题正确的是()。
设,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为,设,求AΒ.
设A,B为n阶矩阵,且r(A)+r(B)<n,证明:A,B有公共的特征向量。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
设A是n阶正定矩阵,证明:对任意的可逆矩阵P,PTAP为正定矩阵。
设A为n阶矩阵且r(A)=n-1,证明:存在常数k,使得(A*)2=kA*.
随机试题
糖酵解过程的终产物是
最适合外科手术的是()。
某民营房地产开发企业投资的商品住宅项目,总建筑面积36万平米。招标人采用邀请招标方式进行施工总承包招标,共向A、B、C、D家企业发出了招标文件,招标文件规定:“投标保证金为150万元人民币;采用固定总价合同;招标人和中标人在中标通知书发出后30日内订立合同
关于防火卷帘设置,下列说法中正确的是()。
凡结账前发现记账凭证正确而登记账簿时发生的错误,可用()更正。
唐朝初年,“控弦数十万,霸有西域”的少数民族政权是()。
用排除法控制额外变量的实验设计是()
Digitalphotographyisstillnewenoughthatmostofushaveyettoformanopinionaboutit,muchless(1)_____apointofview
以下选项中正确的定义语句是
Nottoolongago,aguestcheckingoutofourPolynesianVillageresortatWaltDisneyWorldwasaskedhowsheenjoyedhervisit
最新回复
(
0
)