首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P为3阶非零矩阵,且满足PQ=O,则下面结论正确的是( )
已知P为3阶非零矩阵,且满足PQ=O,则下面结论正确的是( )
admin
2019-08-12
43
问题
已知
P为3阶非零矩阵,且满足PQ=O,则下面结论正确的是( )
选项
A、t≠6时,P的秩必为2.
B、t≠6时,P的秩必为1.
C、t=6时,P的秩必为2.
D、t=6时,P的秩必为1.
答案
B
解析
本题考查当AB=O时,r(A)+r(B)≤n的应用.显然,当t=6时,r(Q)=1,由于PQ=O时r(P)+r(Q)≤3,此时1≤r(P)≤2,因此可排除C、D.当t≠6时,r(Q)=2,再由于PQ=0时r(P)+r(Q)≤3,所以,r(P)≤1,而P为非零矩阵,则r(P)≥1,于是r(P)=1.故选B.
转载请注明原文地址:https://kaotiyun.com/show/cqN4777K
0
考研数学二
相关试题推荐
设A为n阶方阵(n≥2),A*为A的伴随矩阵,证明:
求下列方程的通解:(Ⅰ)y′=[sin(lnχ)+cos(lnχ)+a]y;(Ⅱ)χy′=+y.
已知f(x)的一个原函数为cosx,g(x)的一个原函数为x2,下列函数哪些是复合函数f[g(x)]的原函数?(1)x1(2)cos2x(3)cos(x2)(4)cosx
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
判断下列结论是否正确?为什么?(Ⅰ)若函数f(χ),g(χ)均在χ0处可导,且f(χ0)=g(χ0),则f′(χ0)=g′(χ0);(Ⅱ)若χ∈(χ0-δ,χ0+δ),χ≠χ0时f(χ)=g(χ),则f(χ)与g(χ)在χ=χ0处有相同
An×n(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R),证明:若f(0)=1,则f(x)≥ef’(0)x.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1一α2,α1一2α2+α3,(α1一α3),α1+3α2—4α3,是导出组Ax=0的解向量的个数为()
随机试题
极管的图形符号是()。
某患者,女,42岁。因头痛服阿司匹林数片后出现腹痛,今晨排柏油样便400ml来诊。既往无胃病史。首选的检查是()
重症肺炎患儿发生腹胀大多因为
马强一会儿不上网就浑身难受,烦躁、爱发脾气,注意力不集中,甚至吃不下睡不着,这很可能是()。
你所在部门有一面墙渗漏,要修理十天,但你的部门要对群众进行服务,需要正常办公,你准备怎么办?
近年来,国家房地产调控措施的出台十分密集,除了增加公共租赁住房供应外,再加上央行加息,多个城市出现了房屋成交量下跌的态势,房价涨幅开始放缓。这表明()。
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则f’(0)=__________。
要没置在报表每一页的顶部都输出的信息,需要设置______.
Whatwillthewomando?
Whatissospecialaboutintuitivetalent?Extensiveresearchonbrainskillsindicatesthatthosewhoscoreashighlyintuitive
最新回复
(
0
)