首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
admin
2018-08-12
51
问题
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求曲线y=y(x)的方程.
选项
答案
设曲线y=y(x)上的点P(x,y)处的切线方程为Y—y=y’(X一x).它与x轴的交点为[*]由于y’(x)>0,y(0)=1,因此y(x)>1(x>0). 于是[*]又S
2
=∫
0
x
y(t)dt.根据题设2S
1
一S
2
=1,有[*]并且y’(0)=1,两边对x求导并化简得yy’’=(y’)
2
,这是可降阶的二阶常微分方程,令P(y)=y’,则上述方程可化[*]分离变量得[*]从而有 y=C
2
e
C1x
根据y’(0)=1,y(0)=1,可得C
1
=1,C
2
=1.故所求曲线的方程为y=e
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jhj4777K
0
考研数学二
相关试题推荐
设z=z(x,y)满足
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
求微分方程y"+4y’+4y=eax的通解.
证明方程x+p+qcosx=0有且仅有一个实根,其中p,q为常数,且0
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
证明:
试证明:曲线恰有三个拐点,且位于同一条直线上.
问λ为何值时,线性方程组有解,并求出解的一般形式.
A、 B、 C、 D、 B此题若立刻作变换tanx=t或tan,则在0≤x≤2π上不能确定出单值连续的反函数x=ψ(t).可先利用周期性和奇偶性将积分区间缩小,在此小区间上作变换tanx=t.在第2式
已知齐次线性方程组(I)为又已知线性方程组(Ⅱ)的通解为x=k1(s,2,3,16)T+k2(2,1,2,t)T,其中k1,k2是任意常数.若方程组(I)与(Ⅱ)同解,试求m,n,s,t的值.
随机试题
试述杜甫律诗的创作成就。
西方哲学史上首次提出“美本身”问题的美学家是【】
某慢性肺源性心脏病病人,喘憋明显,略有烦躁,在治疗过程中,应慎用镇静药,以避免
城市环境卫生设施工程规划的主要任务有()。①根据城市发展目标和城市布局,确定城市环境卫生配置标准和垃圾集运、处理方式;②合理确定主要环境卫生设施的数量、规模;③科学布局垃圾处理场等各种环境卫生设施,制定环境卫生设施的隔离与防护措施;④提出垃圾回
下列法律关系中的法律事实属于法律行为的是()。
新征用耕地应缴纳的城镇土地使用税,其纳税义务发生时间是()。
从发展的角度看,下面说法中正确的是()。
【2015年重庆开县.判断】制度化教育就是对非制度化教育的全盘否定。()
Evidenceofthebenefitsthatvolunteeringcanbringolderpeoplecontinuestorollin."Volunteershaveimprovedphysicalands
AccordingtoDavid,whatdoesasaferandmorecontrolledworldleadto?
最新回复
(
0
)