首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
admin
2016-05-09
37
问题
已知方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
.试写出线性方程组
的通解,并说明理由.
选项
答案
由题意可知,线性方程组(Ⅱ)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中c
1
,c
2
,…,c
n
是任意的常数. 这是因为: 方程组(Ⅰ)和(Ⅱ)的系数矩阵分别为A,B,则根据题意可知AB
T
=0,因此 BA
T
=(AB
T
)
T
=0。 可见A的n个行向量的转置为(Ⅱ)的n个解向量. 由于B的秩为n,因此(Ⅱ)的解空间的维数为2n-r(B)=2n-n=n,又因为A的秩是2n与 (Ⅰ)的解空间的维数的差,即n,因此A的n个行向量是线性无关的,从而它们的转置向量构成 (Ⅱ)的一个基础解系,因此得到(Ⅱ)的上述的一个通解.
解析
转载请注明原文地址:https://kaotiyun.com/show/crw4777K
0
考研数学一
相关试题推荐
设f(x)有连续的导数,f(0)=0且fˊ(0)=b,若函数在x=0处连续,则常数A=_______.
以下矩阵可相似对角化的个数为()
以y=C1ex+C2cos2x+C3sin2x为通解的常系数齐次线性微分方程可以为()
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量记P=(a,Aa,A2a),求3阶矩阵B,使得P-1AP-B,并计算行列式|A+E|
设线性无关的函数y1,y2,y3都是非齐次线性微分方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2为任意常数,则该方程的通解为()
行列式|A|非零的充要条件是().
已知二次型f=2x12+3x22+332+2ax2x3(a>0)通过正交变换化成标准形f=y+2y+5y.求参数a及所用的正交变换矩阵.
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设A为四阶实对称矩阵,且A2+2A-3E=O,若r(A-E)=1,则二次型xTAx在正交变换下的标准形为()
设Ω是由曲面x2+y2一z2=0与平面z=2围成的空间区域,则的值是________.
随机试题
根据我国《劳动法》关于劳动争议的规定,下列哪些说法是错误的?
下列哪项为胰腺癌常见伴发病
砂仁具有的功效是
阻生智齿所导致的危害中,哪项可除外
一患者行金属烤瓷冠修复.冠就位后发现冠十分密合.经调无早接触后选择聚羧酸黏同剂黏固,调拌黏固剂时严格按照粉、液比例,按就位道方向就位,面垫一棉卷.让患者紧咬5min.黏固完成后再次检查发现咬合过高。在黏固前可采取何种预防措施
在归纳中药药物性能中应用阴阳学说,以下药物中属于阳的是()。
[2012年,第44题]按系统命名法,下列有机化合物命名正确的是()。
“2015年珠海社会治理创新优秀案例培育行动”共征集到约100个案例。经仔细对照案例情况与报名要求,最终有96个案例符合培育标准,即将进入公众投票与专家评审阶段。这些案例代表了珠海创新社会治理、加强社会建设的最新探索与成果,将孵化出这座城市的善治新标杆。
孕妇很容易出现维生素缺乏症状,有人认为这不是由于饮食中缺乏维生素造成的,而通常是由于腹内婴儿的生长时对维生素的大量需求造成的。为了评价上述结论的确切程度,以下哪项操作最为重要?()
已知一算术表达式的中缀形式为A+B*C-D/E,后缀形式为ABC*+DE/一,其前缀形式为()。
最新回复
(
0
)