首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充要条件是 ( )
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充要条件是 ( )
admin
2019-03-14
101
问题
n维向量组α
1
,α
2
,…,α
s
(3≤s≤n)线性无关的充要条件是 ( )
选项
A、存在一组全为零的数k
1
,k
2
,…,k
s
,使
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0
B、α
1
,α
2
,…,α
s
中任意两个向量都线性无关
C、α
1
,α
2
,…,α
s
中任意一个向量都不能由其余向量线性表出
D、存在一组不全为零的数k
1
,k
2
,…,k
s
,使
k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0
答案
C
解析
可用反证法证明之.必要性:假设有一向量,如α
s
可由α
1
,α
2
,…,α
s-1
线性表出,则α
1
,α
2
,…,α
s
线性相关,这和已知矛盾,故任意一个向量均不能由其余向量线性表出;充分性:假设α
1
,α
2
,…,α
s
线性相关
至少存在一个向量可由其余向量线性表出,这和已知矛盾,故α
1
,α
2
,…,α
s
线性无关.(A)对任何向量组都有0α
1
+0α
2
+…+0α
s
=0的结论;(B)必要但不充分,如α
1
=[0,1,0]
T
,α
2
=[1,1,0]
T
,α
3
=[1,0,0]
T
任意两个线性无关,但α
1
,α
2
,α
3
线性相关;(D)必要但不充分.如上例α
1
+α
2
+α
3
≠0,但α
1
,α
2
,α
3
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/csV4777K
0
考研数学二
相关试题推荐
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则()
设α=(1,2,3)T,,A=αβT,则A3=_____________。
设A=(α1,α2,α3)是三阶矩阵,且|A|=4。若B=(α1一3α2+2α3,α2一2α3,2α2+α3),则|B|=__________。
已知α1是矩阵A属于特征值A=1的特征向量,α2与α3是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是()
设函数f(x,y)=3x+4y一ax2一2ay2—2βxy。试问参数α,β满足什么条件时,函数有唯一极大值?有唯一极小值?
设有线性方程组(1)证明:当a1,a2,a3,a4两两不等时,此方程组无解;(2)设a1=a3=k,a2=a4=一k(k≠0)时,方程组有解β1=(一1,1,1)T,β2=(1,1,一1)T,写出此方程组的通解.
计算(x+y)dxdy,其中区域D由y=x2,y=4x2及y=1所围成.
设随机变量X的概率分布为P{X=k}=的概率分布.
设随机变量(X,Y)的概率密度为f(x,y)=,求(1)系数k;(2)边缘概率密度;(3)X和Y是否独立.
设f(χ)在χ0的邻域内四阶可导,且|f(4)(χ)|≤M(M>0).证明:对此邻域内任一异于χ0的点χ,有其中χ′为χ关于χ0的对称点.
随机试题
面色㿠白,多见于
为了保护劳动者的合法权益,调整(),建立和维护适应社会主义市场经济的劳动制度,促进经济发展和社会进步,这是《中华人民共和国劳动法》的立法目的。
施工组织总设计的内容包括:工程概况的特点分析、施工部署和主要工程项目施工方案、( )施工总平面图和技术经济指标等。
关于钢筋混凝土框架结构震害严重程度的说法,错误的是()。
根据城镇土地使用税法律制度的有关规定,下列各项中,应征收城镇土地使用税的有()。
调节旅游者情绪,消除其消极情绪的主要方法有()。
婴儿刚出生时,最发达的感觉是()。
下列各句中没有语病的一句是()。
北京农业大学的教授在河北省推广柿树剪枝技术时,为了说服当地的群众,教授把一块柿树园一分为二,除自然条件相同外,共他的条件包括施肥、灭虫、浇水、除草等也都相同,其中的一块柿树园剪枝,而另一块不剪枝。到收获季节,剪枝的一块柿树园的柿子产量比不剪枝的多三成以上。
若某大学分配给计算机系的IP地址块为202.113.16.128/26,分配给自动化系的IP地址块为202.113.16.192/26,那么这两个地址块经过聚合后的地址为()。
最新回复
(
0
)