首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1). (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
admin
2017-04-23
115
问题
设4元线性方程组(Ⅰ)为
又已知某齐次线性方程组(Ⅱ)的通解为k
1
(0,1,1,0)+k
2
(一1,2,2,1).
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
选项
答案
(1)由系数矩阵的初等行变换:A=[*](x
3
,x
4
任意),令x
3
=1,x
4
=0,得ξ
1
=(0,0,1,0)
T
;令x
3
=0,x
4
=1,得ξ
2
=(一1,1,0,1)
T
,则ξ
1
,ξ
2
就是(Ⅰ)的一个基础解系. (2)若x是(Ⅰ)和(Ⅱ)的公共解,则存在常数λ
1
,λ
2
,λ
3
,λ
4
,使 [*] 由此得λ
1
,λ
2
,λ
3
,λ
4
满足齐次线性方程组 [*] 解此齐次线性方程组,得其参数形式的通解为 λ
1
=C,λ
2
=C,λ
3
=一C,λ
4
=C,其中C为任意常数.故(Ⅰ)和(Ⅱ)有非零公共解,全部非零公共解为C(0,0,1,0)
T
+C(一1,1,0,1)
T
=C(一1,1,1,1)
T
,其中C为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Zkt4777K
0
考研数学二
相关试题推荐
若an(x-1)n在x=-1处收敛,则此级数在x=2处________。
设f(x,y)连续,且f(x,y)=xy+f(u,v)dudv,其中D是由y=0,y=x2,x=1所围区域,则f(x,y)=________。
设f(x,y,z)是k次齐次函数,即f(tx,ty,tz)=tkf(x,y,z),λ为某一常数,则结论正确的是________。
设fn(x)=x+x2+…+xn(n≥2).证明:方程fn(x)=1有唯一的正根xn;
设f(x)在x=0的邻域内有定义,且f(0)=0,则f(x)在x=0处可导的充分必要条件是().
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
微分方程xy’+y=xex满足y(1)=1的特解为________。
求以y=C1ex+C2e-x-x为通解的微分方程(C1、C2为任意常数)。
用导数的定义求下列函数的导(函)数:
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=(x)在点(6,f(6))处的切线方程.
随机试题
勤俭节约是中华民族的传统美德。在不同的历史时期,勤俭节约具有不同的要求。这是因为()。①价值选择具有社会历史性②社会存在决定社会意识③社会意识具有直接现实性④社会意识具有相对独立性
常用于焊缝内部质量检测的方法有________和________两种。
如图标志的含义是什么?
预激综合征者频繁发作阵发性心房颤动,最佳的治疗方案是
下列属于小细胞低色素贫血的是
下列消费品中,应征收消费税的有()。
根据消费税的有关规定,委托加工的特点是()。
中国建设银行深圳分行的“女子特色银行”“汽车银行”和“口岸银行”,体现了银行市场定位原则中的()原则。
工资率的上升导致()增加。
“家庭学校”(homeschool)是一种()
最新回复
(
0
)