首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设f(x)=ex-∫0x(x-t)f(t)dt,其中f(x)二阶可导,求f(x). (2)设f(x)在(-1,+∞)内连续,且f(x)-∫0xtf(t)dt=1(x>-1),求f(x).
(1)设f(x)=ex-∫0x(x-t)f(t)dt,其中f(x)二阶可导,求f(x). (2)设f(x)在(-1,+∞)内连续,且f(x)-∫0xtf(t)dt=1(x>-1),求f(x).
admin
2019-09-04
22
问题
(1)设f(x)=e
x
-∫
0
x
(x-t)f(t)dt,其中f(x)二阶可导,求f(x).
(2)设f(x)在(-1,+∞)内连续,且f(x)-
∫
0
x
tf(t)dt=1(x>-1),求f(x).
选项
答案
(1)由f(x)=e
x
-∫
0
x
(x-t)f(t)dt,得f(x)=e
x
-x∫
0
x
f(t)dt+∫
0
x
tf(t)dt, 两边对x求导,得f’(x)=e
x
-∫
0
x
f(t)dt, 两边再对x求导得f’’(x)+f(x)=e
x
,其通解为f(x)=C
1
cosx+C
2
sinx+[*]e
x
. 在f(x)=e
x
-∫
0
x
(x-t)f(t)dt中,令x=0得f(0)=1,在f’(x)=e
x
-∫
0
x
f(t)dt中,令x=0 得f’(0)=1,于是有C
1
=[*],C
2
=[*],故 f(x)=[*](cosx+sinx)+[*]e
x
. (2)由f(x)-[*]∫
0
x
f(t)dt=1得(x+1)f(x)-∫
0
x
tf(t)dt=x+1, 两边求导得f(x)+(x+1)f’(x)=xf(x)=1, 整理得[*],解得 [*] 由f(0)=1得C=3,故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/czD4777K
0
考研数学三
相关试题推荐
(1)用x=et化简微分方程
求微分方程y"一2y’一e2x=0满足条件y(0)=1,y’(0)=1的特解.
求微分方程(x>0)的通解.
求解+(y—x)dy=0.
设,B是3阶非零矩阵,且AB=O,则Ax=0的通解是_______.
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,其中k1,k2为任意常数,则满足方程组①且满足条件x1=x2,x3=x4的解是_______.
设f(x,y)为连续函数,交换累次积分∫02πdx∫0sinxf(x,y)dy的次序为先x后y成为()
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξε[a,b]使得
设X1,X2,…,X100是独立同服从参数为4的泊松分布的随机变量,是其算术平均值,则P{≤4.392}≈_____.
随机试题
患者便溏腹痛,泻而不爽,大便黄褐而臭,肛门灼热,渴欲饮,小便黄赤,舌苔黄腻,脉象濡数。治法宜选
在MySQL数据库函数中,消息函数的类型包括
A.血道转移B.淋巴道转移C.浸润性生长D.外生性生长肝血管瘤可见
以下选项中,如果配制pH=4.0的缓冲溶液,正确的是()。
该患者最可能的诊断是应该给予以下哪种治疗
A.显于风关B.达于气关C.达于命关D.透关射甲E.未超风关邪入脏腑,病情严重者,指纹的表现
下述属于保和丸功效的是
根据《中华人民共和国大气污染防治法》,国务院有关部门和()应当采取措施,改进城市能源结构,推广清洁能源的生产和使用。
挪威研究人员分析了该国过去几十年里230万份出生记录,以及相应孕妇的健康数据,结果发现,如果母亲怀孕期间出现妊娠剧吐症状,女儿后来怀孕时也出现该症状的可能性是其他人的3倍。研究还表明,孕妇妊娠剧吐与腹中胎儿是否含有来自丈夫一方的相关基因没有关系,导致这一症
王华是一名历史爱好者,应某中学教务处刘老师的邀请,他将去该学校为同学们讲解第二次世界大战的相关知识。请参考考生文件夹中的“参考图片.docx”示例效果,帮他制作一份关于第二次世界大战的演示文稿,具体要求如下:除标题幻灯片外,为其余所有幻灯片添加幻灯片编
最新回复
(
0
)