首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为________.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为________.
admin
2018-09-20
58
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶非齐次线性方程
y"+p(x)y’+q(x)y=f(x) ①
的3个解,且
则式①的通解为________.
选项
答案
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
一y
2
与y
2
一y
3
是式①对应的齐次线性方程
y"+p(x)y’+q(x)y=0 ②
的两个解.现证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
k
1
(y
1
一y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
一y
3
≠0,于是式③可改写为
矛盾.若k
1
=0,由y
2
一y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
—y
3
线性无关.
于是
Y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
一y
2
)+C
2
(y
2
-y
3
)+y
1
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/AxW4777K
0
考研数学三
相关试题推荐
设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
设f(x)连续,证明:
设函数f(u,v)具有二阶连续偏导数,且满足f’’uu(u,v)=f’’vv(u,v),若已知f(x,4x)=x,f’u(x,4x)=4x2,求f’’uu(x,4x),f’’uv(x,4x)与f’’vv(x,4x).
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex-yey=zez所确定,求du.
设直线y=x将椭圆x2+3y2-6y=0分成两部分,求椭圆在该直线下方部分的面积.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
求幂级数的收敛域与和函数.α4能否由α1,α2,α3线性表示,并说明理由。
微分方程y’’一4y’=x2+cos2x的特解形式为().
将一枚匀称的硬币独立地掷三次,记事件A=“正、反面都出现”;B=“正面最多出现一次”;C=“反面最多出现一次”,则下列结论中不正确的是
随机试题
A.肾主封藏B.肝主疏泄C.两者均有关D.两者均无关(1996年第99,100;2000年第99,100题)影响津液运行的因素()
车床丝杠的纵向进给和横向进给运动是()。
以下关于代谢性酸中毒的说法,不正确的是
牙列缺损的分类是为了
主清肺与胃之火的药物是()主清心与小肠之火的药物是()
宋代四大书法家,简称苏黄米蔡,下列选项中与其书法代表作对应错误的是()。
Theteachertogetherwiththestudents______discussingReadingSkillsthat______newlypublishedinAmerica.
Traditionally,theAmericanfarmerhasalwaysbeenindependentandhard-working.Intheeighteenthcenturyfarmerswerequites
Accordingtoexperts,companionshipandsocialsupportarevitaltobothourpsychologicalandphysicalwell-being—onereason,p
A、Helookshappierlately.B、Hemanageshistimewell.C、He’simprovedthewayhelooks.D、Hefollowsdirectionsmorecarefully
最新回复
(
0
)