首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xfˊ(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xfˊ(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
admin
2019-08-06
60
问题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xfˊ(x)=f(x)+
x
2
(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
选项
答案
由题设,当x≠0时,[*] 据此并由f(x)在点x=0处的连续性,得 f(x)=[*]x
2
+Cx,x∈[0,1]. 又由已知条件2=∫
0
1
[*],即C=4-a.因此, f(x)=[*]ax
2
+(4-a)x. 旋转体的体积为V(a)=π∫
0
1
[f(x)]
2
dx=([*])π,令Vˊ(a)=([*])π=0,得a=-5.又Vˊˊ(A)=[*]>0,故当a=-5时,旋转体体积最小.
解析
转载请注明原文地址:https://kaotiyun.com/show/d5J4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn.Aαn=0.求A的特征值与特征向量.
设的一个特征值为λ1=,其对应的特征向量为判断A是否可对角化.若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设相似于对角阵.求:a及可逆阵P,使得P-1AP=A,其中A为对角阵.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设方程组AX=B有解但不唯一.求正交阵Q,使得QTAQ为对角阵.
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.如果EX=μ,DX=σ2,试证明:Xi一(i≠j)的相关系数p=一;
设总体X服从(a,b)上的均匀分布,X1,X2,…,Xn是取自X的简单随机样本,则未知参数a,b的矩估计量为=___________.
求下列定积分:∫01
设D是由点O(0,0),A(1,2)及B(2,1)为顶点构成的三角形区域,计算xdxdy.
随机试题
在测定食品中的灰分含量时,灼烧残留物中不可能存在的是()。
与肝细胞癌的发生无关的是
以下关于阿米巴肝脓肿的治疗中,不正确的是
右手指被鱼刺刺伤后肿胀、疼痛。查体:小指呈半屈位,被动伸直小指时剧痛,诊断为()
A.低浓度给氧B.高浓度给氧C.两者均可D.两者均否急性呼吸窘迫综合征宜采用()。
采用光电输入法OMR技术输入数据,是将欲输入的数据在OMR表上直接按规则填写数字即可。( )
欧洲债券票面所使用的货币最主要的是()。
工程质量控制是为了保证工程质量符合()、规范标准所采取的一系列措施、方法和手段。
北斗三号全球卫星导航系统建成并开通服务,标志着()。
NarratorListentopartofalectureaboutlibraries.Nowgetreadytoanswerthequestions.Youmayuseyournotestoh
最新回复
(
0
)