首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实反对称矩阵,证明E+A可逆.
设A是n阶实反对称矩阵,证明E+A可逆.
admin
2018-11-20
77
问题
设A是n阶实反对称矩阵,证明E+A可逆.
选项
答案
A是一个抽象矩阵,因此用行列式证明是困难的.下面的证明思路是通过(E+A)X=0只有零解来说明结论. 设η是一个n维实向量,满足(E+A)η=0,要证明η=0.用η
T
左乘上式,得 η
T
(E+A)η=0,即η
T
η=一η
T
Aη 由于A是反对称矩阵,η
T
Aη是一个数,η
T
Aη=(η
T
Aη)
T
=一η
T
Aη,因此η
T
Aη=0于是 η
T
η=0 η是实向量,(η,η)=η
T
η=0,从而η=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/d5W4777K
0
考研数学三
相关试题推荐
设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为________.
设f(x)=,则x2项的系数为________.
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
设,且AX+|A|E=A*+X,求X.
设求:|一2B|;
设为正定矩阵,令P=证明:D=BA一1BT为正定矩阵.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,f(x)dx=0.证明:存在c∈(a,b),使得f(f)=0;
设α是n维单位列向量,A=E一ααT.证明:r(A)<n.
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
随机试题
血淋与尿血的鉴别要点,在于()(1991年第68题)
文小雨加入了学校的旅游社团组织,正在参加与组织暑期到台湾日月潭的夏令营活动,现在需要制作一份关于日月潭的演示文稿。根据以下要求,并参考“参考图片.docx”文件中的样例效果,完成演示文稿的制作。将第3张幻灯片中标题下的文字转换为表格,表格的内容参考样例
IsNutritiousFoodReallyPricier,and,Ifso,IsThatReallytheProblem?A)Nobodydisagrees:WeAmericanseatbadly.Wee
求微分方程xy’+y=4x3+3x2+2x+1的通解.
WhenIwasabout12Ihadanenemy,agirlwholikedtopointoutmyshortcomings.Weekbyweekherlistgrew:Iwasskinny,Iw
A.清热利湿退黄B.清热通便C.和胃退黄D.利湿清热退黄E.润燥通便茵陈蒿汤的功用是
秦始皇陵位于陕西临潼县,北宋帝陵位于河南开封境内。()
注意事项1.本题本由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分100分。2.监考人员宣布考试开始时,你才可以开始答题。3.请在题本、答题纸指定位置填
设f(x)和g(x)在(一∞,+∞)内可导,且f(x)<g(x),则必有().
Paintersoftime’Theworld’sfascinationwiththemystiqueofAustralianAboriginalart.’
最新回复
(
0
)