首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
admin
2016-10-24
272
问题
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
选项
答案
A所对应的二次型为f=X
T
=AX,因为A是实对称矩阵,所以存在正交变换X=QY,使得 f=X
T
AX[*]λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
,其中λ
i
>0(i=1,2,…,n),对任意的X≠0,因为X=QY,所以Y=Q
T
X≠0,于是f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
>0,即对任意的X≠0有X
T
AX>0,所以X
T
AX为正定二次型,故A为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/UEH4777K
0
考研数学三
相关试题推荐
设水以常速(即单位时间注入的水的体积为常数)注入图2.7所示的罐中,直至将水罐注满.画出水位高度随时问变化的函数y=y(t)的图形(不要求精确图形,但应画出曲线的凹凸方向并表示出拐点).
根据定义证明:
用函数极限的定义证明:
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明:存在一点ε∈(0,a),使f(ε)+εfˊ(ε)=0.
设a=3i+5j-2k,b=2i+j+9k,试求λ的值,使得(1)λa+b与z轴垂直;(2)λa+b与a垂直,并证明此时|λa+b|取最小值.
设l1=(1,1),l2=(-1,1),分别求出函数z=xy在点(0,0)处沿方向l1和方向l2的二阶方向导数.
设y=f(x)在x=x。的某邻域内具有三阶连续导数,如果fˊ(x。)=0,f〞(x。)=0,而f〞ˊ(x。)≠0,试问x=x。是否为极值点?为什么?又(x。,f(x。))是否为拐点?为什么?
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=_________.
随机试题
外胎的结构由其骨架材料的帘布层结构不同,可分为_______和_______。
A、医生检查患者时,由于消毒观念不强,造成交叉感染B、医生满足患者的一切保密要求C、妊娠危及母亲的生命时,医生给予引产D、医生对患者的呼叫或提问给予应答E、医生的行为使某个患者受益,但却损害了别的患者的利益上述各项中属于医生违背有利原则的是
既能补脾气,又能益胃的药物是
成人静脉血白细胞参考范围是()。
日本女子幸子为美国在菲律宾某公司职员,与中国武汉市男子钱列在东京结婚,感情失和,钱列遂在武汉起诉离婚。该案适用:( )
现新建一所大学,下列哪些费用包括在该新建大学某教学楼单项工程综合概算中()。
自然失业是由于经济中一些难于克服的原因所引起的失业,它是任何经济都难以避免的失业,也是正常的失业。根据以上定义,下列不属于自然失业的是()
1900年9月,英法德意四国侵略军以“未按职分保护外国人”等罪名在保定处斩三位清政府官员,对此,清政府抗议道:“即使中国官员有办理不善之处,应交中国自行处分,何得侵我自主之权?”对此,以下解读正确的是()。
1924年1月,国民党一大在广州召开,大会通过的宣言对三民主义作出了新的解释,具体表现为()
Organisedvolunteeringandworkexperiencehaslongbeenavitalcompaniontouniversitydegreecourses.Usuallyitisleftto【B
最新回复
(
0
)