首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是( )
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是( )
admin
2019-01-19
52
问题
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P
-1
AP)
T
属于特征值λ的特征向量是( )
选项
A、P
-1
α。
B、P
T
α。
C、Pα。
D、(P
-1
)
T
α。
答案
B
解析
设β是矩阵(P
T
AP)
T
属于λ的特征向量,并考虑到A为实对称矩阵A
T
=A,有
(P
-1
AP)
T
β=λβ,即P
T
A(P
-1
)
T
β=λβ。
把四个选项中的向量逐一代入上式替换β,同时考虑到Aα=λα,可得B选项正确,即
左端=P
T
A(P
-1
)
T
(P
T
α)=P
T
Aα=P
T
λα=λP
T
α=右端,
故选B。
转载请注明原文地址:https://kaotiyun.com/show/d9P4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的特征值为-1,1,1,对应的特征向量分别为(1,-1,1)T,(1,0,-1)T,(1,2,-4)T.求A100.
函数f(χ)=(χ2-χ-2)|χ3-χ|不可导点的个数是:【】
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
设(X,Y)的概率分布为已知Cov(X,Y)=一,其中F(x,y)表示X与Y的联合分布函数.求常数a,b,c的值.
设函数f(x)=收敛.
设A,B为同阶方阵,(1)如果A,B相似,试证:A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均为实对称矩阵时,试证:(1)的逆命题成立.
求二重积分I=xydxdy,其中积分区域D={(x,y)|x2+y2≥1,x2+y2—2x≤0,y≥0}.
如图1—6—1所示,设函数u(x,y)=∫1/xyds∫1/sxf(t,s)dt(x>0,y>0).(1)当f连续时,求u"yx(x,y)和u"xy(x,y).(2)当f具有连续的一阶偏导数时,进一步再求u"xx(x,y)和u"yy(x,y).
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y’+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k为常数.
设f(x)的定义域为[1,+∞),f(x)在[1,+∞)可积,并且满足方程f(x)=∫1+∞f(x)dx。讨论f(x)的单调性.
随机试题
关于过敏性鼻炎治疗不包括以下哪项()
A.胎方位B.胎产式C.胎势D.胎先露E.横产式最先进入骨盆人口的胎儿部分称
A.狭叶番泻叶B.尖叶番泻叶C.耳叶番泻叶D.罗布麻叶E.大青叶叶长卵形或卵状披针形,叶端急尖,叶基稍不对称。无毛或近无毛的药材为()。
关于商业辐射区说法正确的有()。
操作系统是一种:
上市公司接受他人赠与资产的,如果该项资产的金额占上市公司最近1个会计年度经审计的合并报表总资产的比例达()以上时,应当按照有关规定履行信息披露和报告任务。
什么是生产性采购?
维护个人利益是个人行为的唯一动机。因此,维护个人利益是影响个人行为的主要因素。以下哪项如果为真,最能削弱题干的论证?
Readtheextractbelowfromtheannualreportofacompanywithmanufacturinginterestsaroundtheworld.Choosethebestwo
Itisnot______muchhisappearanceIlikeashispersonality.
最新回复
(
0
)