首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)分别满足如下两个条件中的任何一个: (Ⅰ)f(x)在x=0处三阶可导,且=1; (Ⅱ)f(x)在x=0邻域二阶可导,f′(0)=0,且-1)f″(x)-xf′(x)=ex-1,则下列说法正确的是
设f(x)分别满足如下两个条件中的任何一个: (Ⅰ)f(x)在x=0处三阶可导,且=1; (Ⅱ)f(x)在x=0邻域二阶可导,f′(0)=0,且-1)f″(x)-xf′(x)=ex-1,则下列说法正确的是
admin
2016-10-26
52
问题
设f(x)分别满足如下两个条件中的任何一个:
(Ⅰ)f(x)在x=0处三阶可导,且
=1;
(Ⅱ)f(x)在x=0邻域二阶可导,f′(0)=0,且
-1)f″(x)-xf′(x)=e
x
-1,则下列说法正确的是
选项
A、f(0)不是f(x)的极值,(0,f(0))不是曲线y=f(x)的拐点.
B、f(0)是f(x)的极小值.
C、(0,f(0))是曲线y=f(x)的拐点.
D、f(0)是f(x)的极大值.
答案
C,B
解析
(Ⅰ)由条件
=1及f′(x)在x=0连续即知
f′(x)=f′(0)=0.
用洛必达法则得
型未定式极限J=
.
因
f″(x)=f″(0),若f″(0)≠0,则J=∞,与J=1矛盾,故必有f″(0)=0.再由
(0)的定义得
因此,(0,f(0))是拐点.选(C).
(Ⅱ)已知f′(0)=0,现考察f″(0).由方程得
=3
f′(x)=3+0=3,
由f″(x)在x=0连续
f″(0)=3>0.因此f(0)是f(x)的极小值.应选(B).
转载请注明原文地址:https://kaotiyun.com/show/dGu4777K
0
考研数学一
相关试题推荐
[*]
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
用分部积分法求下列不定积分:
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
设f(u)为奇函数,且具有一阶连续导数,S是由锥面两球面x2+y2+z2=1与x2+y2+z2=2(z>0)所围立体的全表面,向外.求
求空间第二型曲线积分其中L为球面x2+y2+z2=1在第1象限部分的边界线,从球心看L,L为逆时针.
(2011年试题,一)设则I,J,K的大小关系是().
设S为球面:x2+y2+z2=R2,则下列同一组的两个积分均为零的是
随机试题
特发性血小板减少性紫癜的治疗顺序是
A.上热下寒B.表寒里热C.热证转化为寒证D.真寒假热E.真热假寒恶寒发热,无汗,头痛,身痛,气喘,烦躁,口渴,脉浮紧者,证属
甲房地产开发公司将一块以出让方式获得的土地使用权转让给乙房地产开发公司(以下简称乙公司),土地用途为住宅用地,3年后该项目建成,由丙物业管理公司实施物业管理。物业管理区域内物业管理的重要责任主体是()。
财政资源配置职能主要表现在( )。
弘扬求真务实的精神要做到()。
在微程序控制的计算机中,若要修改指令系统,只要()。
网络体系结构可以定义成
下列关于栈的叙述中,正确的是()。
ElNinoWhilesomeforecastingmethodshadlimitedsuccesspredictingthe1997ElNinoafewmonthsinadvance,theColumbia
Man:Hi,Susan.HaveyoufinishedreadingthebookProf.Johnsonrecommended?Woman:Oh,Ihaven’treaditthroughthewayI’dr
最新回复
(
0
)