首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,0,-1,0)T,α2=(0,1,0,a)T,α3=(1,1,a,-1)T,记A=(α1,α2,α3). (Ⅰ)解齐次线性方程组(ATA)x=0; (Ⅱ)当a,b为何值时,向量组β1=(1,1,b,a)T,β2=(1,2,-1,2a)T可由向
设α1=(1,0,-1,0)T,α2=(0,1,0,a)T,α3=(1,1,a,-1)T,记A=(α1,α2,α3). (Ⅰ)解齐次线性方程组(ATA)x=0; (Ⅱ)当a,b为何值时,向量组β1=(1,1,b,a)T,β2=(1,2,-1,2a)T可由向
admin
2020-10-30
61
问题
设α
1
=(1,0,-1,0)
T
,α
2
=(0,1,0,a)
T
,α
3
=(1,1,a,-1)
T
,记A=(α
1
,α
2
,α
3
).
(Ⅰ)解齐次线性方程组(A
T
A)x=0;
(Ⅱ)当a,b为何值时,向量组β
1
=(1,1,b,a)
T
,β
2
=(1,2,-1,2a)
T
可由向量组α
1
,α
2
,α
3
线性表示?并求出一般表示式.
选项
答案
(Ⅰ)由于(A
T
A)x=0与Ax=0同解,故只需求Ax=0的解即可.对A实施初等行变换,得[*] 当a≠-1时,R(A)=3,Ax=0只有零解; 当a=-1时,R(A)=2<3,Ax=0有非零解,其同解方程组为=[*] 故Ax=0的通解为=[*] 其中k为任意常数. (Ⅱ)β
1
,β
2
可由α
1
,α
2
,α
3
线性表示 [*]矩阵方程(α
1
,α
2
,α
3
)X=(β
1
,β
2
)有解 [*]R(α
1
,α
2
,α
3
)=R(α
1
,α
2
,α
3
[*]β
1
,β
2
). 对(α
1
,α
2
,α
3
[*]β
1
,β
2
)实施初等行变换,得[*] 当b=-1时,R(α
1
,α
2
,α
3
)=R(α
1
,α
2
,α
3
[*]β
1
,β
2
),β
1
,β
2
可由α
1
,α
2
,α
3
线性表示. 当a≠-1时,R(α
1
,α
2
,α
3
)=R(α
1
,α
2
,α
3
[*],β
1
,β
2
)=3, [*] 此时,β
1
=α
1
+α
2
,β
2
=α
1
+2α
2
; 当a=-1时,R(α
1
,α
2
,α
3
)=R(α
1
,α
2
,α
3
[*]β
1
,β
2
)=2, 此时,β
1
=(1-ι
1
)α
1
+(1-ι
1
)α
2
+ι
1
α
3
,其中ι
1
为任意常数, β
2
=(1-ι
2
)α
1
+(2-ι
2
)α
2
+ι
2
α
3
,其中ι
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/dJx4777K
0
考研数学三
相关试题推荐
设f(x,y,z)=ex+y2z,其中z=z(x,y)是由方程x+y+z+xyz=0所确定的隐函数,则fz’(0,1,—1)=________。
曲线y=lnx上与直线x+y=1垂直的切线方程为__________.
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1。试证必存在ξ∈(0,3),使f’(ξ)=0。
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
(87年)求矩阵A=的实特征值及对应的特征向量.
[2013年]设曲线y=f(x)与y=x2-x在点(1,0)处有公切线,则=_________.
设X1,X2,…,Xn,…相互独立且都服从参数为(λ>0)的泊松分布,则当n→∞时以Ф(x)为极限的是
函数,则极限()
随机试题
患者,男,20岁。因大量蛋白尿1个月入院,病前无上呼吸道感染史。查体:血压120/80mmHg,双下肢有明显可凹性水肿。入院后诊断为肾病综合征。为明确病理类型,行肾穿刺活检,电镜下见有广泛的肾小球脏层上皮细胞足突消失。(2011年第107题)首选的治疗
急性心肌梗死时,最先恢复正常的心肌酶是
在下列各项中,能反映医学本质特征的是
其主病与痰饮无关的脉象是()。
根据宪法和法律,我国国家机关的个人负责制包括以下哪些内容。()
下列选项所列的情形中,应当依法享有继承权的是()。
下述有关历史创造者的观点中,属于唯物史观的有()。
计算
READINGPASSAGE1Youshouldspendabout20minutesonQuestions1-13,whicharebasedonReadingPassage1below.
BritishteachingunionsSundaycautiouslywelcomedgovernmentplanstoextendschoolopeninghoursforpupilsagesunder14that
最新回复
(
0
)