首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
admin
2019-03-19
56
问题
设向量α
1
,α
2
,…,α
t
是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α
1
,…,β+α
t
线性无关.
选项
答案
证 设有一组数k
0
,k
1
…,k
t
.使得 k
0
β+k
1
(β+α
1
)+…+k
t
(β+α
1
)=0即 (k
0
+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0 (*) 用矩阵A左乘(*)式两端并注意Aα
i
=0(i=1,…,t),得 (k
0
+k
1
+…+k
t
)Aβ=0因为Aβ≠0,所以有 k
0
+k
1
+…+k
t
=0 (**)代入(*)式,得 k
1
α
1
+…+k
t
α
1
=0由于向量组α
1
,…,α
t
是方程组AX=0的基础解系,所以 k
1
=…=k
t
=0因而由(**)式得k
0
=0.因此,向量组β,β+α
1
,…,β+α
t
线性无关.
解析
本题主要考查向量组线性无关的定义证明法及齐次方程组基础解系的概念.利用定义证明向量组线性无关,就是从向量组的线性组合等于零出发,由已知条件来推证线性组合的系数都为零,本题的推证关键是“用A左乘”这一变换.
转载请注明原文地址:https://kaotiyun.com/show/feP4777K
0
考研数学三
相关试题推荐
设向量组α1,α2线性无关,向量组α1+b,α2+b线性相关,证明:向量b能由向量组α1,α2线性表示。
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
求幂级数的收敛域及和函数。
设矩阵相似,求x,y;并求一个正交矩阵P,使P—1AP=Λ。
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使=0.
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
设an=A,证明:数列{an)有界.
设A=,而n≥2为整数,则An一2An-1=__________。
若行列式的某个元素aij加1,则行列式的值增加Aij.
已知对于n阶方阵A,存在自然数k,使得Ak=O,试证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
随机试题
能敛肺涩肠的药物是()(1994年第139题)
A、大流行B、散发C、有季节性D、暴发E、流行发病率呈历年一般水平的是
根据室内环境污染控制的不同要求,下列属于I类民用建筑工程的是()。
如果某项资产不能再为企业带来经济利益,即使是由企业拥有或者控制的,也不能作为企业的资产在资产负债表中列示。
资料:2007年7月1日发行的某债券,面值100元,期限3年,票面年利率8%,每半年付息一次,付息日为6月30日和12月31日。要求:某投资者2009年7月1日以97元购入,试问该投资者持有该债券至到期日的收益率是多少?(2007年)
能促进钙的吸收的维生素是()。
很多人认为,农村家养的土鸡,土猪,采用传统方式喂养,吃的是粮食、蔬菜、青草,不吃饲料,生长周期长,运动量大,肌肉紧实,更有营养,味道更加鲜美,所以市场上的土鸡,土猪通常售价更高。但研究者指出,其实土鸡或土猪并不比集中饲养的肉鸡和肉猪更有营养、更安全。
A、 B、 C、 D、 B
二次型f(x1,x2,x3,x4)=x32+4x42+2x1x2+4x3x4的规范形是__________.
HappinessIsaJourneyThereisnowaytohappiness.Happinessistheway./Don’twastetoomuchofyourtimestudying,wor
最新回复
(
0
)