首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
admin
2019-03-19
108
问题
设向量α
1
,α
2
,…,α
t
是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α
1
,…,β+α
t
线性无关.
选项
答案
证 设有一组数k
0
,k
1
…,k
t
.使得 k
0
β+k
1
(β+α
1
)+…+k
t
(β+α
1
)=0即 (k
0
+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0 (*) 用矩阵A左乘(*)式两端并注意Aα
i
=0(i=1,…,t),得 (k
0
+k
1
+…+k
t
)Aβ=0因为Aβ≠0,所以有 k
0
+k
1
+…+k
t
=0 (**)代入(*)式,得 k
1
α
1
+…+k
t
α
1
=0由于向量组α
1
,…,α
t
是方程组AX=0的基础解系,所以 k
1
=…=k
t
=0因而由(**)式得k
0
=0.因此,向量组β,β+α
1
,…,β+α
t
线性无关.
解析
本题主要考查向量组线性无关的定义证明法及齐次方程组基础解系的概念.利用定义证明向量组线性无关,就是从向量组的线性组合等于零出发,由已知条件来推证线性组合的系数都为零,本题的推证关键是“用A左乘”这一变换.
转载请注明原文地址:https://kaotiyun.com/show/feP4777K
0
考研数学三
相关试题推荐
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(x)]没有间断点。
设B是三阶非零矩阵,且AB=0,则a=________。
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y|0≤x≤1,0≤y≤1},计算二重积分I=xyfxy"(x,y)dxdy。
设z=f(z2一y2,exy),其中f具有连续二阶偏导数,求
设f(x,y)连续,且f(x,y)=x+f(u,υ)dudυ,其中D是由y=,x=1,y=2所围成的区域,则f(x,y)=________。
计算行列式Dn=
设连续函数f(x)满足f(x)=,则f(x)=______.
求幂级数的收敛域.
计算二重积分(x+y)dxdy,其中D:x2+y2≤x+y+1.
(2000年)设对任意的x,总有φ(x)≤f(x)≤g(x),且()
随机试题
家庭健康评估的注意点,护士应注意的是
根据《中华人民共和国药品管理法实施条例》,应当定期发布药品质量公告的是
患者,女性,40岁。因门静脉高压入院,准备近期手术,对患者护理除外
划拨土地使用权转让,应()。
我国企业现金流量表编制的方法是( )。
《治安管理处罚法》将尊重和保障人权作为治安管理处罚的一个重要原则加以规定,正是()的具体体现。
电脑键盘是最常用也是最主要的输入设备,通过键盘可以将英文字母、数字、标点符号等输入到计算机中,从而向计算机发出命令、输入数据等。能够在没有鼠标的情况下,可以很容易地打开软件的菜单按键是()。
新闻报道最重要的特点是什么?
做大经济“蛋糕”
Norevolutionsintechnologyhaveasvisiblymarkedthehumanconditionasthoseintransport.Movinggoodsandpeople,theyhav
最新回复
(
0
)