首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
admin
2019-12-26
76
问题
设
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用(1)的结果判断矩阵B-C
T
A
-1
C是否为正定矩阵,并证明你的结论.
选项
答案
【解法1】矩阵B-C
T
A
-1
是正定矩阵. 由(1)的结果可知,矩阵D合同于矩阵 [*] 又D为正定矩阵,可知矩阵M为正定矩阵. 因矩阵M为对称矩阵,故B-C
T
A
-1
C为对称矩阵.对x=(0,0,…,0)
T
及任意的y=(y
1
,y
2
,…,y
n
)
T
≠0,有 [*] 即y
T
(B-C
T
A
-1
C)y>0,故B-C
T
A
-1
C为正定矩阵. 【解法2】由(1)的结果知,矩阵D合同于矩阵 [*] 又D为正定矩阵,可知矩阵M为正定矩阵,从而M的各阶顺序主子式大于零,于是B-C
T
A
-1
C的各阶顺序主子式也大于零.因矩阵M为对称矩阵,故B-C
T
A
-1
C为对称矩阵,故B-C
T
A
-1
C为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/dPD4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为(1)求A.(2)求一个满足要求的正交矩阵Q.
设n阶矩阵A=,则|A|=_______.
设n阶矩阵A的秩为n一2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为________。
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
若的代数余子式A12=一1,则代数余子式A21=___________.
已知A=,矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,则X=___________.
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
二次型f(x1,x2,x3)=(x1+2x2+a3x3)(x1+5x2+b3x3)的合同规范形为________。
设两两独立的三事件A,B,C满足条件:ABC=,P(A)=P(B)=P(C)<,P(A∪B∪C)=则P(A)=_______.
随机试题
孕妇合并十二指肠溃疡不宜选用的药物是
简述学校教学工作的意义。
该患者诊断应考虑患者经口气管插管机械通气已一周,短期内尚无撤离呼吸机指征,此时应考虑转为
一年多前,某市一所技校“回炉”了百余名大学生。原因就是这些人的大学教育缺乏实用性,毕业后很难找到工作。通过半年到一年的职业技术学校的“回炉”,这些大学生全部找到了工作。对于这段文字中的“回炉”,理解准确的是()。
《义务教育美术课程标准(2011年版)》中各学习领域分别由目标、()和评价要点三部分组成。
关于科学革命的讨论_______于十七世纪。不过,其时革命尚在__________地展开,相关讨论的焦点集中在科学的本性,而未有所谓“科学革命史”的理解。到十九世纪,现代科学的基本模式逐渐定型,一些学者便回到现代科学的源头做起了编史和整理工作。 依次填
A.IthinkyoucangetoneinthemarketB.TheycanmakethetankmorebeautifulandprovidefoodandshelterforfishC.Myfi
Everytwoweeksalanguagedisappears.By2100nearlyhalfofthe6,000spokentodaymaybegone.Migration,eitherbetweencoun
关于IEEE802.3ae的描述中,错误的是()。
HowWomenAreReshapingtheDefenseIndustryThedefenseindustryisfacingunprecedentedchallenges,withthehelpofanew
最新回复
(
0
)