首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
admin
2019-12-26
105
问题
设
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用(1)的结果判断矩阵B-C
T
A
-1
C是否为正定矩阵,并证明你的结论.
选项
答案
【解法1】矩阵B-C
T
A
-1
是正定矩阵. 由(1)的结果可知,矩阵D合同于矩阵 [*] 又D为正定矩阵,可知矩阵M为正定矩阵. 因矩阵M为对称矩阵,故B-C
T
A
-1
C为对称矩阵.对x=(0,0,…,0)
T
及任意的y=(y
1
,y
2
,…,y
n
)
T
≠0,有 [*] 即y
T
(B-C
T
A
-1
C)y>0,故B-C
T
A
-1
C为正定矩阵. 【解法2】由(1)的结果知,矩阵D合同于矩阵 [*] 又D为正定矩阵,可知矩阵M为正定矩阵,从而M的各阶顺序主子式大于零,于是B-C
T
A
-1
C的各阶顺序主子式也大于零.因矩阵M为对称矩阵,故B-C
T
A
-1
C为对称矩阵,故B-C
T
A
-1
C为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/dPD4777K
0
考研数学三
相关试题推荐
A是3阶实对称矩阵,A2=E,如果r(A+E)=2,求A的相似对角形,并计算行列式|A+2E|的值.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩为_______.
设A为3阶正交矩阵,它的第一行第一列位置的元素是1,又设β=(1,0,0)T,则方程组AX=β的解为_______.
若的代数余子式A12=一1,则代数余子式A21=___________.
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1、Xn分别为对应于λ1、λn的特征向量,记f(X)=,X∈Rn,X≠0证明:λ1≤f(X)≤λn,maxf(X)=λn=f(Xn),minf(X)=λ1=f(X1).
已知二次型2x12+3x22+3x32+2ax2x3(a>0)可用正交变换化为y12+2y22+5y32,求a和所作正交变换.
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
二次型f(x1,x2,x3)=(x1+2x2+a3x3)(x1+5x2+b3x3)的合同规范形为________。
随机试题
男性,27岁,发热、畏寒5日,每日最高体温达39.8℃,最低体温达39.1℃。此热型属于
维生素C注射液中,抗氧剂亚硫酸钠对碘量法测定含量有干扰,能排除其干扰的掩蔽剂是
A.鼠疫和霍乱B.流行性感冒C.艾滋病D.肺炎E.肝癌我国法定传染病中甲类传染病包括
开发区区域环境影响评价技术导则的适用范围是()。
工程项目质量控制均应围绕着致力于满足()的质量总目标而展开。
()是在横向分类基础上,按特定要素指标对岗位进行的纵向分级。
【彼得大帝】中山大学2016年历史学基础真题;南开大学2018年世界历史真题
什么是大众?大众的主要特点是什么?
Youhaveprobablyseenads(广告)innewspapersorontelevisionformail-ordercompanies.Perhapsacatalogue(商品目录)hasbeensent
Johnturnedadeafeartohismother’ssuggestion,______heknewittobevaluable.
最新回复
(
0
)