首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
admin
2019-12-26
95
问题
设
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用(1)的结果判断矩阵B-C
T
A
-1
C是否为正定矩阵,并证明你的结论.
选项
答案
【解法1】矩阵B-C
T
A
-1
是正定矩阵. 由(1)的结果可知,矩阵D合同于矩阵 [*] 又D为正定矩阵,可知矩阵M为正定矩阵. 因矩阵M为对称矩阵,故B-C
T
A
-1
C为对称矩阵.对x=(0,0,…,0)
T
及任意的y=(y
1
,y
2
,…,y
n
)
T
≠0,有 [*] 即y
T
(B-C
T
A
-1
C)y>0,故B-C
T
A
-1
C为正定矩阵. 【解法2】由(1)的结果知,矩阵D合同于矩阵 [*] 又D为正定矩阵,可知矩阵M为正定矩阵,从而M的各阶顺序主子式大于零,于是B-C
T
A
-1
C的各阶顺序主子式也大于零.因矩阵M为对称矩阵,故B-C
T
A
-1
C为对称矩阵,故B-C
T
A
-1
C为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/dPD4777K
0
考研数学三
相关试题推荐
设n阶矩阵A的秩为n一2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为________。
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
设有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P一1AP为对角矩阵.
A是3阶实对称矩阵,A2=E,如果r(A+E)=2,求A的相似对角形,并计算行列式|A+2E|的值.
设α,β都是n维非零列向量,A=αβT.证明:A相似于对角矩阵βTα≠0.
已知抛物线y=Px2+qx(其中P0)在第一象限内与直线x+Y=5相切,且抛物线与x轴所围成的平面图形的面积为S.问p和q为何值时,S达到最大值?求出此最大值.
设0<a<b,证明:
已知一个长办形的长l以2cm/s的速率增加,宽ω以3cm/s的速率增加,则当l=12cm,ω=5cm时,它的对角线增加的速率为_________.
四元方程组的基础解系是______.
设随机变量序列X1,…,Xn,…相互独立且都在(-1,1)上服从均匀分布,则=________(结果用标准正态分布函数Ф(x)表示).
随机试题
党的十八大以来,以习近平同志为核心的党中央创新国家安全理念,统揽国家安全全局,创造性提出()
关于卵巢的功能,下述何项是错误的
四环素类中哪个药物作用最强
地高辛治疗心房颤动的主要作用是
A.清营汤B.一贯煎C.逍遥散D.膈下逐瘀汤E.茵陈蒿汤合黄连解毒汤首选用于治疗慢性肝炎肝郁气滞证的方剂是
销售成品价格与生产成品价格的不同点是()。
“山重水复疑无路,柳暗花明又一村”形容的效果是()。
()是正确的IP地址。
在学期教学开始或一个单元教学开始时对学生现有发展水平进行评价,目的是弄清学生已有的知识基础和能力水平,这样的评价叫做
WhenItellpeoplethatIworkfromwhereverIwant,whetheritbehomeorafriend’soffice,Iamgenerallymetwithabitof
最新回复
(
0
)