首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
admin
2019-12-26
64
问题
设
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用(1)的结果判断矩阵B-C
T
A
-1
C是否为正定矩阵,并证明你的结论.
选项
答案
【解法1】矩阵B-C
T
A
-1
是正定矩阵. 由(1)的结果可知,矩阵D合同于矩阵 [*] 又D为正定矩阵,可知矩阵M为正定矩阵. 因矩阵M为对称矩阵,故B-C
T
A
-1
C为对称矩阵.对x=(0,0,…,0)
T
及任意的y=(y
1
,y
2
,…,y
n
)
T
≠0,有 [*] 即y
T
(B-C
T
A
-1
C)y>0,故B-C
T
A
-1
C为正定矩阵. 【解法2】由(1)的结果知,矩阵D合同于矩阵 [*] 又D为正定矩阵,可知矩阵M为正定矩阵,从而M的各阶顺序主子式大于零,于是B-C
T
A
-1
C的各阶顺序主子式也大于零.因矩阵M为对称矩阵,故B-C
T
A
-1
C为对称矩阵,故B-C
T
A
-1
C为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/dPD4777K
0
考研数学三
相关试题推荐
设n阶矩阵A的秩为n一2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为________。
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
设矩阵A,B满足A*BA=2BA-8E,且A=,则B=______.
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩为_______.
设0<a<b,证明:
设a>0,x1>0,且定义xn+1=存在并求其值.
设A为3阶正交矩阵,它的第一行第一列位置的元素是1,又设β=(1,0,0)T,则方程组AX=β的解为_______.
已知方程组的通解是(1,2,一1,0)T+k(一1,2,一1,1)T,则a=__________.
求下列微分方程满足初值条件的特解:(1)2xyˊ=y-x3,y|x=1=0;(2)xyˊ+y=sinx,y|x=π=1;(3)x2yˊ+(1-2x)y=x2,y|x=1=0;(4)yˊcos2x+y=tanx,y|x=0=0;(5)yˊ+y
随机试题
sinusoid
城市内按居民居住地区设立的居民委员会与农村按居住地区设立的村民委员会一样,是我国最基层的一级政府。
传统的lP地址(IPv4)表示为一个_________位的无符号二进制数,通常用以圆点连接的四个十进制数表示。
中国共产党各方面建设的基础是()
A.詹姆斯一兰格理论B.坎农一巴德理论C.沙赫特和辛格理论D.评价一兴奋学说E.动力一分化理论情绪状态是认知过程、生理状态和环境因素在大脑皮质中整合的结果,该理论是
大黄酸具有的性质是
供求定理
期货公司应按照()原则传递客户交易指令。
资料一大河啤酒成功地在中国西部一个拥有200万人口的A市经营多年,不仅在该市取得了95%以上市场占有率的绝对垄断,而且在全省的市场占有率也达到了60%以上,成了该省啤酒业界名副其实的龙头老大。但是大河啤酒作为一个老的国有企业在营销人才和方法上都存在一
下列选项中,表述职业道德规范内容准确的是()。[河北省2008年9月三级真题]
最新回复
(
0
)