首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1、Xn分别为对应于λ1、λn的特征向量,记 f(X)=,X∈Rn,X≠0 证明:λ1≤f(X)≤λn,maxf(X)=λn=f(Xn),minf(X)=λ1=f(X1).
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1、Xn分别为对应于λ1、λn的特征向量,记 f(X)=,X∈Rn,X≠0 证明:λ1≤f(X)≤λn,maxf(X)=λn=f(Xn),minf(X)=λ1=f(X1).
admin
2019-01-05
71
问题
设λ
1
、λ
n
分别为n阶实对称矩阵的最小、最大特征值,X
1
、X
n
分别为对应于λ
1
、λ
n
的特征向量,记
f(X)=
,X∈R
n
,X≠0
证明:λ
1
≤f(X)≤λ
n
,maxf(X)=λ
n
=f(X
n
),minf(X)=λ
1
=f(X
1
).
选项
答案
存在正交变换X=PY(P为正交矩阵,Y=(y
1
,y
2
…,y
n
)
T
),使得X
T
AX[*]λ
1
y
1
2
+…+λ
n
y
n
2
≤λ
n
(y
1
2
+…+y
n
2
)=λ
n
‖Y‖
2
=λ
n
‖X‖
2
=λ
n
X
T
X,当X≠0时,有X
T
X>0,上面不等式两端同除X
T
X,得 [*] 故maxf(X)=λ
n
=f(X
n
).类似可证minf(X)=λ
1
=f(X
1
).
解析
转载请注明原文地址:https://kaotiyun.com/show/keW4777K
0
考研数学三
相关试题推荐
两台同样的自动记录仪,每台无故障工作的时间服从参数为5的指数分布。首先开动其中一台,当其发生故障时停用,而另一台自行开动,试求两台记录仪无故障工作的总时间T的概率密度。
设连续型随机变量X的分布函数F(x)=求:(Ⅰ)A和B;(Ⅱ)X的概率密度f(x)。
设P(A)>0,P(B)>0,将下列四个数:P(A),P(AB),P(A∪B),P(A)+P(B),按由小到大的顺序排列,用符号“≤”联系它们,并指出在什么情况下可能有等式成立。
已知P—1AP=α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是()
(Ⅰ)验证函数y(x)=(—∞<x<+∞)满足微分方程y"+y’+y=ex;(Ⅱ)求幂级数y(x)=的和函数。
设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b),f(t)dt=∫abg(t)dt。证明∫abxf(x)dx≤∫axxg(x)dx。
设二次型f(x1,x2,x3)=x12+x22+x33+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,一1)T是二次型矩阵的特征向量,求参数a,b;
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.
设A为三阶实对称矩阵,为方程组AN=0的解,为方程组(2E—A)X=0的一个解,|E+A|=0,则A=___________.
已知数列{xn}满足:x0=25,xn=arctanxn-1(n=1,2,3,…),证明{xn}的极限存在,并求其极限.
随机试题
Areyou______spendingmoremoneyonthespaceprogram?
菌痢的确诊依据是
A、R—S细胞B、火焰状瘤细胞C、花细胞D、多核巨细胞E、异常淋巴样浆细胞霍奇金病
办公建筑中有会议桌的中小会议室,每人最小使用面积指标为:
集装箱提单具有哪些功能?
国家教育部新颁布的《义务教育数学课程标准(2011年版)》中指出的数学课程目标,从_____、_____、_____、_____四个方面进行具体的阐述。
教育泛指那些能够增进入的知识技能,影响人的思想品德的一切活动,狭义的教育指学校教育。()
甲恋爱期间送给女友乙一枚钻戒,后二人因性格不合分手,2年后甲欲要回钻戒。甲()
Healthimpliesmorethanphysicalfitness.Italsoimpliesmentalandemotionalwell-being.Anangry,frustrated,emotionally【C1
A、Theyhaveoverwhelmingadvantages.B、Theyaresoldatverylowprices.C、Theyarethesymbolofpeople’sstatus.D、Theymeetc
最新回复
(
0
)