首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs线性无关,βi=αi+αi+1,i=1,…,s-1,βs=αs+α1判断β1,β2,…,βs。线性相关还是线性无关?
设α1,α2,…,αs线性无关,βi=αi+αi+1,i=1,…,s-1,βs=αs+α1判断β1,β2,…,βs。线性相关还是线性无关?
admin
2016-10-21
111
问题
设α
1
,α
2
,…,α
s
线性无关,β
i
=α
i
+α
i+1
,i=1,…,s-1,β
s
=α
s
+α
1
判断β
1
,β
2
,…,β
s
。线性相关还是线性无关?
选项
答案
β
1
,β
2
,…,β
4
对α
1
,α
2
,…,α
s
的表示矩阵为 [*] |C|=1+(-1)
s+1
. 于是当s为偶数时,|C|=0,r(C)<s,从而r(β
1
,β
2
.…,β
s
)<s,β
1
,β
2
,…,β
s
线性相关. 当s为奇数时,|C|=2,r(C)=s,从而r(β
1
,β
2
,…,β
s
)=s,β
1
,β
2
,…,β
s
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/dXt4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上可导,(0<a<b),证明:存在ξ∈(a,b),使
假设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,过点A(0,f(0))与B(1,f(1))的直线与曲线y=f(x)相交于点C(c,f(c)),其中0<c<1.证明:在(0,1)内至少存在一点ξ,使f"(ξ)=0.
若在(-∞,+∞)上连续,则a=________。
求下列三角函数的不定积分。∫sin3xcos2xdx
设F1(x),F2(x)是区间I内连续函数f(x)的两个不同的原函数,且f(x)≠0,则在区间I内必有________。
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
某厂家生产的一种产品同时在两个市场进行销售,售价分别为p1和p2;销售量分别为q1和q2,需求函数分别为q1=24-0.2p1q2=10-0.05p2总成本函数为C=35+40(q1+q2)试问:厂家如何确定两个市场的售价,能使其获得总利润最大?最
求方程x(lnx-lny)dy-ydx=0的通解。
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24-0.2P1,Q2=10-0.05P2总成本函数为C=35+40(Q1+Q2)试问:厂家如何确定两个市场的产品售价,使其获得的总利润最
在一条公路的一侧有某单位的A、B两个加工点,A到公路的距离.AC为1km,B到公路的距离BD为1.5km,CD长为3km(如图4—2).该单位欲在公路旁边修建一个堆货场M,并从A、B两个大队各修一条直线道路通往堆货场M,欲使A和B到M的道路总长最短,堆货场
随机试题
Cisco路由器支持NAT。在路由器上配置NAT的优势在于()。
针对土的矿物成分,在地壳中由岩浆冷凝而成的天然元素或化合物,称()矿物,其粒径相对比较()
基坑监测点水平间距不宜大于()m,每边监测点数不宜少于()个。
不属于合同可撤销的原因的是()。
下列表述中,符合城建税有关规定的是()。
案例下面是某求助者的WAIS-RC的测验结果:对于WAIS-RC,正确的说法包括()
结合犯,是指数个各自独立的犯罪行为,根据刑法的明文规定,结合而成为另一个独立的新罪的犯罪形态。根据定义,下列属于结合犯的是()。
创伤后成长:指一个人在经历重大的生活挫折之后发生的积极性改变。下列属于创伤后成长的是()。
下列叙述中错误的是()
Afewyearsagoitwas【B1】______tospeakofagenerationgap,adivisionbetweenyoungpeopleandtheirelders.Parents【B2】____
最新回复
(
0
)