首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断下列结论是否正确,并证明你的判断. (Ⅰ)设当n>N时xn<yn,已知极限均存在,则A<B; (Ⅱ)设f(x)在(a,b)有定义,又存在c∈(a,b)使得极限,则f(x)在(a,b)有界; (Ⅲ)若=∞.则存在δ>0.使得当0<|x-a|<δ时有界.
判断下列结论是否正确,并证明你的判断. (Ⅰ)设当n>N时xn<yn,已知极限均存在,则A<B; (Ⅱ)设f(x)在(a,b)有定义,又存在c∈(a,b)使得极限,则f(x)在(a,b)有界; (Ⅲ)若=∞.则存在δ>0.使得当0<|x-a|<δ时有界.
admin
2016-10-20
51
问题
判断下列结论是否正确,并证明你的判断.
(Ⅰ)设当n>N时x
n
<y
n
,已知极限
均存在,则A<B;
(Ⅱ)设f(x)在(a,b)有定义,又存在c∈(a,b)使得极限
,则f(x)在(a,b)有界;
(Ⅲ)若
=∞.则存在δ>0.使得当0<|x-a|<δ时
有界.
选项
答案
(Ⅰ)不正确.令a
n
=x
n
-y
n
,则有a
n
<0(n>N),因此[*]=A-B≤0,即在题设下只能保证A≤B,不能保证A<B.例如,[*]=0. (Ⅱ)不正确.这时只能保证:存在点c的一个空心邻域U
0
(c,δ)={x|0<|x-c|<δ},使f(x)在U
0
(c,δ)中有界,一般不能保证f(x)在(a,b)有界.例如:f(x)=[*],(a,b)=(0,1),取定c∈(0,1),则[*]在(0,1)无界. (Ⅲ)正确.因为[*],由存在极限的函数的局部有界性即知:存在δ>0,使得当0<|x-a|<δ时[*]有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/dcT4777K
0
考研数学三
相关试题推荐
血液试验ELISA(enzyme-linkedimmunosorbentassay,酶联免疫吸附测定)是现今检验艾滋病病毒的一种流行方法.假定ELISA试验能正确测出确实带有病毒的人中的95%存在艾滋病病毒,又把不带病毒的人中的1%不正确地识别为存
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
两艘轮船都要停靠同一泊位,它们可能在一昼夜的任意时间到达,设两船停靠泊位的时间分别需要1h与2h,求一艘轮船停靠泊位时,需要等待空出码头的概率.
判别下列级数是否收敛,如果收敛,是条件收敛还是绝对收敛?
设半径为r的球的球心在半径为a的定球面上,试求r的值,使得半径为r的球的表面位于定球内部的那一部分的面积取最大值.
求下列微分方程的通解:(1)y〞-2yˊ=0;(2)y〞-3yˊ+2y=0;(3)y〞+4y=0;(4)y〞-4yˊ+5y=0;(5)y〞-6yˊ+9y=0;(6)y〞+2yˊ+ay=0;(7)y〞+6y〞+10yˊ=0;
设函数f(x)对于闭区间[a,b]上的任意两点x,y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正的常数,且f(a)·f(b)<0.证明:至少有一点ε∈(a,b),使得f(ε)=0.
已知g(x)是微分方程g’(x)+sinx.g(x)=cosx满足初始条件g(0)=0的解,则=_____.
设随机变量X1,X2,…,Xn,…相互独立,,则当n→∞时Yn以正态分布为极限分布,只要X1,…,Xn,…
设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放人四个盒子,记X为至少有一只球的盒子的最小号码.(I)求X的分布律;(Ⅱ)若当X=k时,随机变量Y在[0,k]上服从均匀分布,k=1,2,3,4,求P{Y≤2}.
随机试题
患者,男,36岁。平素嗜酒,今晨脘腹痞闷,口苦纳少,口干不欲饮,舌红苔黄腻,脉滑数。治疗最佳方为
女性,35岁。诉水肿就诊。尿液检查蛋白(+),红细胞5~10个/HP,白细胞2~3个/HP,颗粒管型0~2个/HP,拟诊慢性肾炎。体检时最可能发现水肿的部位是
关于刑事诉讼法定代理人与诉讼代理人的区别,下列哪些选项是正确的?
()是中华民族的优良传统,是一个人立足于社会的基本准则,也是对从业者的道德要求。
在借贷记账法下,将账户划分为借、贷两方,哪一方登记增加,哪一方登记减少的依据是()。
下列各项中,不属于社会审计实施阶段工作的是()。
张先生提前为3岁的儿子未来的小学教育进行投资规划,下列投资中比较适合的是()。
单利和复利的区别在于()。
LRU页面调度算法是选择()的页面先调出。
A、JasondamagedMike’scarinanoccident.B、Jasonjustboughtanewcar.C、JasonboughtanewcarforMike.D、Jasoncouldn’tfi
最新回复
(
0
)