首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs和β1β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1β2,…,βt线性无关.
设α1,α2,…,αs和β1β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1β2,…,βt线性无关.
admin
2017-10-21
68
问题
设α
1
,α
2
,…,α
s
和β
1
β
2
,…,β
t
是两个线性无关的n维实向量组,并且每个α
i
和β
j
都正交,证明α
1
,α
2
,…,α
s
,β
1
β
2
,…,β
t
线性无关.
选项
答案
用定义证明.设 c
1
α
1
+c
2
α
2
+…+c
s
α
s
+k
1
β
1
+k
2
β
2
+…+k
t
β
t
=0,记η=c
1
α
1
+c
2
α
2
+…+c
s
sα
s
=一(k
1
β
1
+k
2
β
2
+…+k
t
β
t
),则(η,η)=一(c
1
α
1
+c
2
α
2
+…+c
s
α
s
,k
1
β
1
+k
2
β
2
+…+k
t
β
t
)=0即η=0,于是c
1
,c
2
,…,c
s
,k
1
,k
2
,…,k
t
全都为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/ddH4777K
0
考研数学三
相关试题推荐
设(1)求PTCP;(2)证明:D一BA—1BT为正定矩阵.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=.(1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,AB≠0.证明:齐次线性方程组BY=0有零解,其中B=(β,β+α1,…,β+αs).
就a,b的不同取值,讨论方程组解的情况.
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e—x一3e2x为特解,求该微分方程.
设(X,Y)服从二维正态分布,则下列说法不正确的是().
对二元函数z=f(x,y),下列结论正确的是().
已知二次型f(x1,x2,x3)=422一3x32+4x1x2—4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
设二次型f(x1,x2,x3)=2(a1x1,a2x2,a3x3)2+(b1x1,b2x2,b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
随机试题
2005年某市A饮品公司研制出一种新型饮料,使用的商标为“康健”,在市场上很受消费者欢迎,已成为当地知名的饮料品牌,但一直未注册。2008年,同市的B饮料厂自行研制一种花粉饮料,并向商标局注册“康健”商标。商标局初步审定后予以公告。A公司看到后,欲向商标局
脂酸的活化形成为()
下列哪项可作为泌尿系统感染的筛查试验
症见身目发黄,黄色较淡而不鲜明,食欲不振,肢体倦怠乏力,食少腹胀便溏,心悸气短,舌淡苔薄,脉濡细,辨证治法应为
哮喘的预防治疗,根本在于
中等卫校毕业生石某,在乡卫生院工作,2010年取得执业助理医师执业证书。他要参加执业医师资格考试,根据《执业医师法》规定,应取得执业助理医师执业证书后,在医疗机构中工作满
某法官于2004年4月从A市B县人民法院退休,在2005年5月,他可以从事下列哪些行为:()。
估价结果报告是简明扼要地说明下列内容:委托人、估价机构、估价对象、估价目的、估价时点、价值定义、估价依据、估价原则、估价方法、估价结果、估价人员、估价作业日期、估价报告的有效期。()
在合同实施中,如果( )指令工程变更属于合同规定的工程范围,则承包人必须无条件执行。
以下哪位文化名人是英国人?()(浙江师范大学2010)
最新回复
(
0
)