首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论函数f(x)=在(一∞,+∞)上的有界性.
讨论函数f(x)=在(一∞,+∞)上的有界性.
admin
2020-03-05
13
问题
讨论函数f(x)=
在(一∞,+∞)上的有界性.
选项
答案
由f(一x)=[*]可知:f(-x)=f(x) .所以,f(x)是偶函数.只需证明f(x)在[0,+∞)上有界.又[*]于是,对于[*]存在A>0,当x>A时,有[*]即当x>A时,有0
1.取M=max{1,M
1
},则对[*]x∈[0,+∞),有0≤f(x)≤M从而可知,对[*]x∈(一∞,+∞),有0≤f(x)≤M.
解析
因为f(x)为偶函数,所以只需证明f(x)在[0,+∞)上有界.要证f(x)在[0,+∞)上有界,只要证明
存在.
(1)要判断函数f(x)在(一∞,+∞)上的有界性,需考察f(x)在间断点x
0
及在无穷远点的极限.若
存在,则f(x)在x
0
附近有界,若
存在,则f(x)在x
0
的左邻域内有界,若
存在,则f(x)在x
0
的右邻域内有界.若f(x)在(a,b)内连续,又
均存在,则f(x)在(a,b)内有界.在闭区间上连续函数一定有界,但在开区间上不连续的函数也可能有界.例如:
f(x)在x=0处不连续,但f(x)在(一1,1)内有界.
(2)在本题的证明中取
(或取其他一个确定的正数)是非常必要的.如果用
来证明f(x)在[A,+∞)上有界就是错误的,因为此时的“界”不确定.
(3)用变量替换可证明f(x)与其原函数
的奇偶性有着密切的联系:若f(x)连续,则
1)
为奇(偶)函数<=>f(x)为偶(奇)函数.
2)
为偶函数<=>f(x)为奇函数.
转载请注明原文地址:https://kaotiyun.com/show/dfS4777K
0
考研数学一
相关试题推荐
设随机变量X1,X2,X3相互独立,其中X1服从区间[0,6]上的均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,则D(X1一22+3X3)=________.
设随机变量X1的分布函数为F1(x),概率密度函数为f1(x),且EX1=1,随机变量X的分布函数为F(x)=0.4F1(x)+0.6F1(2x+1),则E(X)=________.
设随机变量X的概率密度为f(x)=若k满足概率等式P(X≥k}=2/3,则k的取值范围是_______.
设a,b是非零向量,且|b|=1及=_________.
设两曲线y=f(x)与y=∫0arctanxe-t2dt在点(0,0)处有相同的切线,则_____.
二阶常系数非齐次线性微分方程y’’一2y’一3y=(2x+1)e-x的特解形式为().
若方程χ3-6χ2-15χ+a=0恰有三个实根,则a的取值范围是_______.
设数列{xn}与{yn}满足,则下列判断正确的是()
设f(x)在x=0处二阶可导,f(0)=0且=2,则().
随机试题
可治疗老年便秘、产后便秘的通便类药物是
王某与李某为一幢楼房的权属发生纠纷,起诉至人民法院。张某向人民法院主张该幢楼房归他所有,人民法院遂追加张某为第三人。其后原告王某申请撤诉,根据上述情况下列说法正确的是:
符合条件()时,用电单位宜设置自备电源。
若投资15万元建造一个任何时候均无残值的临时仓库,估计年收益为25000元,假定基准收益率为12%,仓库的寿命期为8年,则该项目()。
通过摆事实、讲道理进行教育的德育方法是___________。
当社会总需求小于社会总供给时,一般不宜采取()。
根据以下资料,回答以下题。2014年,某市十大产业链企业累计完成产值3528.8亿元,同比增长13.4%;实现主营业务收入3478.8亿元、利税348.9亿元、利润222.9亿元,同比分别增长13.0%、19.4%和19.5%。其中,十大产业链规
某眼镜店推出一款墨镜,该墨镜的利润为进价的25%,在“世界护眼日”当月,又推出了一款近视镜,该近视镜的利润为进价的15%,墨镜比近视镜的卖价贵142元,近视镜的进价是墨镜进价的84%,那么墨镜进价为多少元?
“江山多娇—2011.中国百家金陵画展(中国画)”,于11月16日上午在江苏省美术馆举行。(语料来源:《美术报》,2011年11月21日)
Theindustrialsocietieshavebeenextremelyproductiveduringthelasttwocenturies.Theeconomicadvancehasbeen【C1】______
最新回复
(
0
)