首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关.问: α1能否由α2,α3线性表示?证明你的结论.
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关.问: α1能否由α2,α3线性表示?证明你的结论.
admin
2019-05-10
67
问题
设向量组α
1
,α
2
,α
3
线性相关,向量组α
2
,α
3
,α
4
线性无关.问:
α
1
能否由α
2
,α
3
线性表示?证明你的结论.
选项
答案
利用命题2.3.1.1判别. 能.证一 因α
2
,α
3
,α
4
线性无关,则α
2
,α
3
线性无关,而α
1
,α
2
,α
3
线性相关,由命题2.3.1.1知,α
1
可唯一地由α
2
,α
3
线性表示. 证二 因α
1
,α
2
,α
3
线性相关,故存在不全为零的数k
1
,k
2
,k
3
,使k
1
α
1
+k
2
α
2
+k
3
α
3
=0,则k
1
≠0.因为如果k
1
=0,则k
2
,k
3
不全为零,且有k
2
α
2
+k
3
α
3
=0,从而α
2
,α
3
线性相关,故α
2
,α
3
,α
4
也线性相关,这与已知条件矛盾,故k
1
≠0,于是α
1
=一(k
2
/k
1
)α
2
一(k
3
/k
1
)α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/djV4777K
0
考研数学二
相关试题推荐
证明:用二重积分证明
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=,Q=.(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+ααT,且B为A的逆矩阵,则a=_______.
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
随机试题
罗杰斯认为教师是【】
女性,27岁。劳累后心悸、气短5年,近一周间断咯血,无发热。查体:双颊紫红,口唇轻度发绀,颈静脉无怒张。两肺未闻干、湿啰音。心浊音界在胸骨左缘第三肋间向左扩大,心尖部局限性舒张期隆隆样杂音,第一心音亢进。肝脏不肿大,下肢无水肿。本病最易发生的心律失常是
中药最本质的特点是
危险度是指
口疮,心脾积热证可选用的中成药有()。
竞争性谈判,或称议标,是客户通过谈判选择咨向公司的方式。其适用条件与两阶段招标、征求建议书基本相同,也就是说,凡适用两阶段招标和征求建议书的招标均可通过竞争性谈判进行。但是,在以下()的情况下采用竞争性谈判最为适宜。
建筑工程施工质量验收中,检验批质量验收的内容包括()。
简述福禄贝尔的教育思想。
认知策略是学习者加工信息的一些方法和技术,通常包括()。
下列表达式计算结果为日期类型的是
最新回复
(
0
)