首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内存在二阶导数,且f(a)=f(b)=0,∫abf(x)dx=0. 证明: 存在η∈(a,b),使得f″(η)-3f′(η)+2f(η)=0。
设f(x)在[a,b]上连续,在(a,b)内存在二阶导数,且f(a)=f(b)=0,∫abf(x)dx=0. 证明: 存在η∈(a,b),使得f″(η)-3f′(η)+2f(η)=0。
admin
2019-09-27
15
问题
设f(x)在[a,b]上连续,在(a,b)内存在二阶导数,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.
证明:
存在η∈(a,b),使得f″(η)-3f′(η)+2f(η)=0。
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g′(η
1
)=g′(η
2
)=0, 而g′(x)=e
-x
[f′(x)-f(x)]且e
-x
≠0,所以f′(η
1
)-f(η
1
)=0,f′(η
2
)-f(η
2
)=0. 令φ(x)=e
-2x
[f′(x)-f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ′(η)=0, 而φ′(x)=e
-2x
[ f″(x)-3f′(x)+2f(x)]且e
-2x
≠0, 所以f″(η)-3f′(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/dnS4777K
0
考研数学一
相关试题推荐
在曲线y=(x一1)2上的点(2,1)处作曲线的法线,由该法线、x轴及该曲线所围成的区域为D(y>0),则区域D绕x轴旋转一周所成的几何体的体积为().
假设两个正态分布总体X~N(μ1,1),Y~N(μ2,1),X1,X2,…,Xm与Y1,Y2,…,Yn分别是取自总体X和Y的相互独立的简单随机样本.分别是其样本均值,分别是其样本方差,则
函数f(x,y)﹦2x2﹢ax﹢6xy2﹢2y在点(1,-1)取得极值,则ab﹦______。
曲线y﹦、直线戈﹦2及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为______。
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
计算曲面积分I=xzdydz+2zydzdx+3xydxdy,其中∑为曲面z=1-x2-(0≤z≤1)的上侧。
求极限
用变量代换x=sint将方程(1一x2)一4y=0化为y关于t的方程,并求微分方程的通解.
设z=f[xg(y),x—y],其中f二阶连续可偏导,g二阶可导,求
求∫arcsin2xdx.
随机试题
根据我国《消费者权益保护法》,消费者保护法律制度中的消费是指生活消费。()
传播学中针对传播主体“谁”的研究也叫( )。
下列情况下应考虑色素痣恶变,除了
表明建筑物的朝向、平面形状、内部布置以及入口、走道和楼梯位置的图纸是建筑施工图中的平面图。()
指出本案招标投标过程中哪些文件属于要约邀请、要约和承诺?本工程预付款是多少万元?工程预付款应从哪个月开始起扣?第l个月至第7个月份合计以及第8、9、10个月,业主工程师代表应签发的工程款各是多少万元?(请列出计算过程)
在团队绩效考核体系建立的步骤中,()是该体系的关键点。
在自然保护区的缓冲区内,可以建设部分生产设施。()
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解.
设d=len(time()),命令?VARTYPE(d)的输出值是
若有定义:char*ps[]={"aa","bb","cc","dd"};,则以下叙述正确的是
最新回复
(
0
)